
Wesley Aptekar-Cassels

The Curse of NixOS

JAN 24, 2022

I've used NixOS as the only OS on my laptop for around three years at this point.
Installing it has felt sort of like a curse: on the one hand, it's so clearly the only operating
system that actually gets how package management should be done. After using it, I can't
go back to anything else. On the other hand, it's extremely complicated constantly
changing software that requires con�guration with the second-worst homegrown con�g

programming language I've ever used1.

I don't think that NixOS is the future, but I do absolutely think that the ideas in it are, so I
want to write about what I think it gets right and what it gets wrong, in the hopes that
other projects can take note. As such, this post will not assume knowledge of NixOS — if
you've used NixOS signi�cantly, there probably isn't anything new in here for you.

The Good

The fundamental thing that NixOS gets right is that software is never installed globally.
All packages are stored in a content-addressable store — for instance, my editor is stored
in the directory "/nix/store/frlxim9yz5qx34ap3iaf55caawgdqkip-neovim-
0.5.1/" — the binary, global default con�guration, libraries, and everything else
included in the vim package exists in that directory. Just downloading that doesn't
"install" it, though — there isn't really such a thing as "installation" in the traditional
sense. Instead, I can open a shell that has a $PATH variable set so that it can see neovim.
This is quite simple to do — I can run nix-shell -p neovim, and I'll get dropped into a
shell that has neovim in the $PATH.

Crucially, this doesn't a�ect any software that doesn't have its $PATH changed. This
means that it's possible to have as many di�erent versions of the same software package
coexisting at the same time as you want, which is impossible with most distributions! You

https://blog.wesleyac.com/
https://blog.wesleyac.com/feed.xml
mailto:me@wesleyac.com
https://github.com/WesleyAC
https://nixos.org/

can have one shell with Python 3.7, another with Python 3.9, and install a di�erent set of
libraries on both of them. If you have two di�erent pieces of software that have the same
dependency, you don't need to make sure they're compatible with the same version, since
each one can use the version of the dependency that it wants to.

Almost all of the good things about NixOS are natural consequences of this single
decision.

For instance, once you have this, rollbacks are trivial — since multiple versions of the
same software can coexist, rolling back just means changing which version of the software
is used by default. As long as you save the information about what versions you used to be
on (which is a tiny amount of information), rolling back is essentially just changing some
symlinks. Since the kernel is a package like any other, you can have the bootloader
remember the list of di�erent versions, and let people boot into previous con�gurations
just by selecting an older version on the boot menu.

This also makes running patched versions of software much simpler — I don't need to
worry about fucking up my system by patching something like the Python interpreter,
since I know that my patched version will only run when I speci�cally want it. But at the
same time, I can patch the Python interpreter and then have some software running on
my system actually use the patched version, since all of this stu� is con�gured through
the same con�guration system.

Another advantage to this systems is that it makes zero-downtime deploys signi�cantly
simpler, since you can have multiple versions of the same software running at the same
time. You don't need to take down the current version of the software before you install the
new one, instead you can install the new version of the software, run both at the same

time, and then cut over once you're con�dent that the new version works2.

Mobile phones and embedded devices have had to build a less general version of this in
order to avoid occasionally bricking themselves when they update, in the form of an A/B
partitioning scheme. So far, desktop computers, and particularly Linux distributions have
largely accepted that occasionally bricking themselves on update is basically �ne, but it
doesn't have to be this way! Using a NixOS-style system eliminates this problem in a

clean, uni�ed manner3.

https://source.android.com/devices/tech/ota/ab

One clear reason to believe that this is the future is that language package managers
(which are more plentiful and can iterate faster) have largely landed on essentially this
solution — virtualenv, Poetry, Yarn, Cargo and many others have landed on basically
this model. Most use version numbers instead of content-addressable storage, due to the
language ecosystems that they're built around, but the fundamentals are the same, and
it's pretty clear from looking at trends in package managers that this model tends to be
successful.

The Bad

There are essentially two fundamental design mistakes in NixOS that lead to the problems
with it.

The �rst is relatively simple: they developed their own programming language to do
con�guration, which is not very good and is extremely di�cult to learn. The vast majority
of people using NixOS do not understand the language, and simply copy/paste example
con�gurations, which mostly works until you need to do something complicated, at which
point you're completely high and dry. There seem to be a handful of people with a deep
understanding of the language who do most of the infrastructural work, and then a long
tail of people with no clue what's going on. This is exacerbated by poor documentation —
there are docs for learning Nix as a language, and docs for using NixOS, but the
connection between those two things is essentially undocumented. One of the things
that's theoretically nice about having everything de�ned in the Nix language is that it's
easily understandable once you learn Nix. Unfortunately, Nix is di�cult enough to learn
that I couldn't tell you if this is true or not. Nix needs more docs explaining deeply how
practical applications of the Nix language actually work. It could also do with less ugly
syntax, but I think that ship has sailed.

There are many other minor complaints about NixOS that stem from this — patching
packages is theoretically easy, but annoying to �gure out how to do in practice, for
instance, and con�guration tends to have a lot of spooky action-at-a-distance.

The second �aw is that NixOS does not actually provide real isolation. Running bash -c
'type $0' will get you bash is
/nix/store/90y23lrznwmkdnczk1dzdsq4m35zj8ww-bash-interactive-5.1-

p8/bin/bash — bash knows that it's running from the Nix store. This means that all
software needs to be recompiled to work on NixOS, often with some terrifying hacks
involved. It also means that it's impossible to statically know what other packages a given
package might depend on. Currently, the way this is implemented is essentially grepping
a package for /nix/store/ to try to �gure out what the dependencies are, which is
obviously... not great. It also means that binaries that link against /lib/ld-
linux.so.2 or scripts that use #!/bin/bash won't work without patching.

Unfortunately, the tools for �xing this are not really there yet. Last fall, I prototyped a

Linux distribution trying to combine a nix-store style package repository with overlayfs4.
Unfortunately, overlayfs becomes very unhappy when you try to overlay too many
di�erent paths (with three distinct failure modes, interestingly), which severely limits
this approach. I still think that there's a lot of potential here — overlayfs could be fast for
arbitrary numbers of paths if that was a design goal — but it's not there yet. This means
that trying to build content-addressable store that is transparent to the apps installed in it
requires essentially building a container image for every composition of packages (this is
the approach that Silverblue takes), which is fundamentally unsatisfying to me.

The advantage to this approach is that you can piggyback o� of existing package
repositories. One of the main barriers for adoption of new Linux distributions is
packaging, but a distribution taking an content addressable store + overlay approach
could automatically get all the bene�ts of NixOS along with all of the packages from
Debian, Ubuntu, RedHat, Arch, NixOS, and any other distributions it fancies.

On the whole

NixOS very clearly has the correct way of thinking about dependency management, but is
hampered by a few poor technical decisions made long ago. I'm going to keep using it,
since I can't stand anything else after having a taste of NixOS, but I'm rooting for
something new to rise up and take its place, that learns from the lessons of NixOS and
implements its features in a more user-friendly way.

1. The worst is, of course, GCL/borgcfg, the (turing complete) con�guration language
for Google's internal job scheduling software. I used to sit next to the team that was

https://github.com/NixOS/patchelf
https://notebook.wesleyac.com/2021-10-recently/#2yRMLIGpt:0.Odmoyx08c:46
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://silverblue.fedoraproject.org/

reimplementing the interpreter for it (since the original interpreter leaked memory
all over the place), after performing what they referred to as a "forensic analysis" of
the semantics of the language, and they were elated when they �nally managed to get
90% of the con�g �les in the monorepo to have the same behaviour as the original
interpreter. Truly one of the worst languages I have ever seen. ↩

2. Some people will say that this doesn't matter, because no one does zero-downtime
deploys on a single machine anyways. This is bullshit — while it's uncommon, people
absolutely do, and a major reason that it's uncommon in the �rst place is precisely
because it's hard! It's possible to get perfectly adequate uptime on a single machine,
and a major part of the reason people think it isn't possible is because the tools for
doing so have historically been very poor. ↩

3. You will likely still need a tiny bit of manual A/B/R logic for dealing with �rmware
updates, but putting as much as possible into the general system has a lot of nice
properties. ↩

4. If people are interested in the notes from this, let me know. I could polish them up
and publish them without too much work. ↩

