
Back to Blog

Thursday, June 22nd 2023

Next.js App Router Update

Posted by

Delba de Oliveira
@delbaoliveira

Lee Robinson
@leeerob

The App Router represents a new foundation for the future of Next.js, but we recognize there are opportunities

to make the experience better. We'd like to give an update on what our current priorities are.

For the upcoming releases of Next.js, we are focusing on the following areas:

Improving Performance

Improving Stability

Improving Developer Education

The App Router

First, it's helpful to provide some context on how the App Router has been designed.

Growing Beyond the Pages Router by Aligning with React

As we saw increased adoption and larger scale applications being built with Next.js, we received feedback

from the community and identified areas where we started to reach the limits of the Pages Router.

Most notably, the Next.js Pages Router was not designed for streaming, a cornerstone primitive in modern

React, that helps us address the limitations we were facing and realize our long-term vision for Next.js.

https://nextjs.org/blog
https://twitter.com/delbaoliveira
https://twitter.com/leeerob
https://vercel.com/home?utm_source=next-site&utm_medium=banner&utm_campaign=blog_june-2023-update
https://nextjs.org/

Making streaming-friendly framework APIs for data fetching, asset loading, and page metadata, as well as

taking advantage of React's newer primitives required large changes to the core architecture of Next.js.

We took the opportunity to build on top of the latest React concurrent features , like Server Components,

Suspense, and more, which have been designed for streaming architectures .

Incremental Adoption is Non-Negotiable

We didn't want our community to have to rebuild their entire applications from the ground up to update to the

latest version of Next.js. We believe incremental adoption is the best strategy for evolving applications over

time.

Per-route incremental migration: Without a major rewrite of your application, you can move a single

route of your application over the App Router and start to take advantage of new features at your own

pace. See our incremental adoption guide or watch a tutorial .

Easily rollback: If you are not satisifed with the performance or developer experience of the App Router,

you can easily rollback to the Pages Router for that specific route.

We are exploring further opportunities to make incremental adoption even easier.

Road to Stability

We began building the Next.js App Router over a year ago and have been steadily releasing new features and

improvements since then.

Initial Announcement: In May of that year, we released an RFC to outline our plans for making routing

and layouts more flexible.

Early Beta: In Next.js 13, we released the first version of the App Router, allowing the community to try it

out and provide early feedback.

Stable API: Responding to feedback, we focused our efforts on finalizing the core API. In 13.4, we marked

the the core API of the App Router as stable and ready for wider adoption.

Our Current Focus

Marking stability signaled to the community that the core API was settled and would not go through major

breaking changes that would require rewrites.

https://react.dev/blog/2023/05/03/react-canaries
https://github.com/reactwg/react-18/discussions/37
https://nextjs.org/docs/app/building-your-application/upgrading/app-router-migration
https://www.youtube.com/watch?v=YQMSietiFm0
https://nextjs.org/blog/layouts-rfc

Since then, we've received lots of valuable feedback and increased adoption has inevitably revealed bugs and

opportunities for further improvement.

We want you to know that we are not yet satisfied with the experience of using the App Router and it is our

top priority moving forward. So, let's talk about the work we're doing to make this experience better.

Improving Performance

Over the coming months, we're focused on three aspects of performance: local iteration speed, production

build times, and serverless performance.

Local development performance

As Next.js has matured, and the size of applications built with it have grown, we've slowly and incrementally

been replacing pieces of its underlying architecture with faster, more scalable tools.

Migration Progress: We started with replacing Babel (compilation) and Terser (minification) with SWC.

This has helped improve local iteration speeds and production build times.

Long-term Investment: Keeping great Fast Refresh performance regardless of an applications size

means making Next.js operate as incremental as possible during local development, by only bundling and

compiling code as needed.

This is why we're currently working on replacing webpack (bundling) with Turbopack , which is built on a

low-level incremental computation engine that enables caching down to the level of individual functions.

Next.js applications that move to Turbopack will see sustained improvements in Fast Refresh speed even

as they grow in size.

In the past few months, the Turbo team has been focused on improving Turbopack performance and

support for all Next.js features and App Router APIs.

Turbopack is currently available in beta (next dev --turbo).

Improving Today's Architecture: In addition to investing in the future, we are continuing to make

performance improvements to our existing webpack architecture.

For certain Next.js applications, especially those refreshing thousands of modules, we have seen reports

of flakiness with local development and Fast Refresh. We're working to improve performance and

reliability here. For example, we recently added in pre-configured settings (modularizeImports) to handle

large icon libraries that might accidentally force thousands of modules to reload on every request.

Build-time performance

https://nextjs.org/docs/architecture/nextjs-compiler
https://turbo.build/pack
https://nextjs.org/docs/architecture/turbopack
https://github.com/vercel/next.js/pull/50900

We are also working on production builds with Turbopack (next build --turbo) and have started to land

the first pieces of this work. Expect more updates on this in the coming releases.

Production performance

Finally, on Vercel, we're working to optimize the performance and memory usage of Vercel Functions defined

through Next.js application code , ensuring minimal cold starts while retaining the benefits of a scalable

serverless architecture. This work has resulted in new tracing capabilities (experimental) in Next.js and early

explorations into server-side developer tools.

Improving Stability

The Pages Router has been around for six years now. The release of the App Router meant the introduction of

new APIs which are still young, with just six months of usage. We've come a long way in a short amount of

time, but there are still opportunities to improve as we learn more from our community and how they're using it.

We appreciate the community's willingness to eagerly adopt the App Router and provide feedback. There's

been a number of bug reports we're investigating and we're thankful for the minimal reproductions you have

created to help isolate issues and verify fixes.

Since 13.4, we've already patched a number of high impact bugs around stability that are available in the latest

patch release (13.4.7). We will be continuing to focus on performance and stability with high intensity.

Improving Developer Education

While we believe the new features of the App Router and modern React are powerful, they also require

additional education and documentation to help teach these new concepts.

Next.js features

We've been working over the past year to re-write the Next.js documentation from scratch. This work is now

live on nextjs.org/docs. We'd like to highlight some important pieces :

Pages and App toggles: You can switch between learning the Pages Router or App Router

documentation using the button on the left side of the documentation. Further, you can filter search results

https://github.com/vercel/next.js/pull/51546
https://vercel.com/blog/framework-defined-infrastructure
https://nextjs.org/docs/app/building-your-application/optimizing/open-telemetry
https://nextjs.org/docs
https://twitter.com/delba_oliveira/status/1664323492077256704

based on your router choice.

Improved content and information architecture: Almost every single page of the App Router

documentation has been refreshed, including more clear structure and cohesiveness between pages, and

hundreds of new illustrations to visually explain how Next.js works.

More to come: We have more work to do here. The Developer Experience team at Vercel is working hard

to provide additional learning resources (including an updated course on /learn teaching the App

Router) and real world codebase examples (including a rewrite of Next.js Commerce).

We'll be releasing new content in the documentation, on Twitter , YouTube , and more.

New React features

We've also heard your feedback about the education around new React features that are available in the

Next.js App Router.

Server Components: It's important to note that features like Server Components and conventions like the

"use client" directive are not Next.js specific, but a larger part of the React ecosystem.

Our team, our partners at Meta, and other independent contributors are working to provide more

education around these topics. It's early days for these concepts, but we're confident in the React

ecosystem and continued education .

Client Components: With the recent conversation around Server Components, it's important to note the

client components are not a de-optimization. The client is a valid part of the React model and is not going

away.

You can think of client components as the existing Next.js ecosystem today, where your favorite libraries

and tools continue to work. For example, a common question we've seen is whether "use client"

needs to be added to every single file to make it a client component. This is not necessary, but we

understand these concepts are new and will take time to learn. You only need to mark the top level

boundary where you code moves between the server to the client. This architecture allows you to

interweave server and client components together .

Growing third-party ecosystem: In addition to education, the ecosystem around React's newer features

is still growing. For example, Panda CSS , a CSS-in-JS library from the makers of Chakra UI, just

announced support for React Server Components.

Server Actions (Alpha): Server Actions enable server-side data mutations, reduced client-side

JavaScript, and progressively enhanced forms. We do not recommend using Server Actions in production

yet. We appreciate early feedback from alpha testers helping us shape the future of this feature.

https://github.com/vercel/commerce
https://nextjs.org/docs
https://twitter.com/nextjs
https://www.youtube.com/c/VercelHQ
https://github.com/reactjs/rfcs/blob/main/text/0227-server-module-conventions.md
https://github.com/reactwg/server-components/discussions/5
https://nextjs.org/docs/getting-started/react-essentials#the-use-client-directive
https://github.com/reactwg/server-components/discussions/5
https://panda-css.com/
https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions

Resources

Docs

Learn

Showcase

Blog

Analytics

Next.js Conf

Previews

More

Commerce

Contact Sales

GitHub

Releases

Telemetry

About Vercel

Next.js + Vercel

Open Source Software

GitHub

Twitter

Legal

Privacy Policy

Cookie Preferences

Subscribe to our newsletter

Stay updated on new releases and
features, guides, and case studies.

© 2023 Vercel, Inc.

Thank you

We're thankful many of you have chosen to learn and build with Next.js.

Our focus on performance, stability, and developer experience will be reflected in the upcoming releases of

Next.js. We want using Next.js to be delightful—and to make you (and your team) more productive.

As always, we greatly appreciate your feedback. If you are experiencing any issues with Next.js, please open

an issue , or start a new discussion , and we will investigate.

you@domain.com Subscribe

https://vercel.com/home?utm_source=next-site&utm_medium=footer&utm_campaign=next-website
https://nextjs.org/docs
https://nextjs.org/learn/foundations/about-nextjs
https://nextjs.org/showcase
https://nextjs.org/blog
https://vercel.com/analytics?utm_source=next-site&utm_medium=footer&utm_campaign=blog_june-2023-update
https://nextjs.org/conf
https://vercel.com/features/previews?utm_source=next-site&utm_medium=footer&utm_campaign=blog_june-2023-update
https://nextjs.org/commerce
https://vercel.com/contact/sales?utm_source=next-site&utm_medium=footer&utm_campaign=blog_june-2023-update
https://github.com/vercel/next.js
https://github.com/vercel/next.js/releases
https://nextjs.org/telemetry
https://vercel.com/solutions/nextjs?utm_source=next-site&utm_medium=footer&utm_campaign=blog_june-2023-update
https://vercel.com/oss?utm_source=next-site&utm_medium=footer&utm_campaign=blog_june-2023-update
https://github.com/vercel
https://twitter.com/vercel
https://vercel.com/legal/privacy-policy
https://github.com/vercel/next.js
https://twitter.com/nextjs
https://github.com/vercel/next.js/issues/new/choose
https://github.com/vercel/next.js/discussions

