Running
Postgres as a
Unikernel

Every now and then we get the question from an interested party along the lines of "So when is this nota good fit?"
after someone realizes that pretty much most any daemonized service running on a x86 linux instance in the cloud (eg:
all modern web application software) is a great fit for unikernels.

There is, indeed, a certain class of software from the mid 90s and earlier that traditionally has not been a great fit and in
the past | would not hesitate to immediately paint postgres as the de-facto classic SYS V poster-child with its gratuitous
use of multiple processes, shared memory, IPC signalling and *ahem?* 1666 global variables. I'm not knocking postgres
here. You have to keep in mind that postgres was birthed in 1996 and descended from Stonebraker (the OG database
godfather), et al's Post-Ingres from 1986. Even in 1996 this was a time before we had "proper" threads, before we had
commercialized virtualization in the form of vmware && the public cloud and before cormmodity SMP processors so you
can't fault anyone for the design decisions made 27 years ago.

Anywho, to cut to the chase, you can now run postgres as a nanos unikernel.

This isn't the first time we took a look at running postgres as a unikernel. A few years ago one of our engineers took a
look at how difficult it might be to port it. He made a lot of progress but after spending a handful of days getting rid of
shared memory and converting the processes to threads, then running into signal issues decided to punt it down the
road until someone really wanted it.

Fast forward to last weekend and there was a LWN post making the rounds on HN and lobste.rs about a conversation
on the pgsqgl-hackers mailing list with the subject line of:

Re: Let's make PostgreSQL multi-threaded.

This immediately caught my eye and my reaction to the question being discussed was essentially "Does a bear shit in
the woods?" In the world of software sometimes a catch-phrase will get repeated so often that it becomes its own echo
chamber. | don't know if there are comp sci. departments out there pushing some of these ideas or whetheritis a
devrel trying to get edgy in their conference talk but one such idea is the "threads are bad" idea. This has done a lot of
damage to the world of software. It comes from the fact that a lot of developers will immediately say "its hard to write
multi-threaded code" ergo "threads are bad". This of course is a logically invalid argument but it is memes like this that
explain why we see software like this not receive the benefits of newer architecture and newer hardware over a 27 year
timeline. Keep in mind in 2023 there are vc-funded postgres companies popping up left and right. | spotted members
from both Neon and EnterpriseDB on this thread.

end rant

Little did | know that Konstantin Knizhnik had already converted the codebase over to a threaded system. As soon as |
saw that | decided it was time to take another look.

The way | go about seeing if something 'just works' or not is pretty straight-forward. | just try to run it. In some cases I've
used the software before and in many | have not. Having used postgres in prod quite a lot over the years and having
already looked at in the past with unikernel glasses on | kinda already knew the issues that needed to be dealt with.

https://github.com/postgrespro/postgresql.pthreads

We first start removing calls to geteuid and getuid. Then we get rid of some more permission checks. While Nanos has
the concept of read-only files and exec protection and other permission related capabilities such as support for pledge
and unveil it doesn't really have the notion of 'users' as there is only one program running and there is no interactive
shell to spawn other programs. It is not a general purpose operating system and has no intention of being one.
Removing calls like this is one way. Another method I'll use sometimes when | can't or won't modify the code is to just
throw in an override library via LD_PRELOAD that looks something like this:

cat ~/zz/1/1.c
int geteuid
return 22

int getuid
return 42

Then in the package | can just set it via an env var:

"Env":
"LD_PRELOAD": "1/1"

Again, these checks make a ton of sense and are definitely warranted in linux land but this is Nanos.

Next, since this was an older codebase | was working off of | had to change the name of a method that clashed with
something that existed in my libc and deal with a compiler error, also from a newer version of gcc.

Earlier on we had created a patch to replace the shared memory call with a heap allocated area which removed
methods such as I[pcMemoryDetach and IpcMemoryDelete for a much simpler calloc. We don't really do shared
memory as it is usually one of those things that implies multiple processes (but not always!).

That is until | saw that we could simply edit the pg_hba.conf file and set the dynamic_shared_memory_type to 'mmap'
instead of 'posix" Yes, yes Andy | see the dirty looks - let me continue my show and tell.

Finally we need to ensure we can access it - the package in question allows 10.0.2.2/32 by default which assumes you are
using user-mode (default network in ops). For prod/other deploys you simply need to copy in the correct network which
in this case is in /db/pg_hba.conf.

| also ended up ifdefng the HAVE_SYNC_FILE_RANGE block in src/backend/storage/file/fd.c in favor MS_ASYNC as we
don't have SYNC_FILE_RANGE but can (and will probably) easily add later. You might be wondering how | discovered
that outside the flood of "could not flush dirty data" error messages | saw. When diving into a codebase like this the '--
trace' flag, which is our version of strace, is invaluable to understand what calls the program is actually issuing and in this
case which ones might be missing or failing.

There are other sundry items of course that if you're curious you can just take a look at the package.manifest or the
sysroot but after all of that - we're now running postgres on the Nanos unikernel:

» ~ ops pkg load eyberg/postgresql:11.3.0 -p 5432

running local instance

booting /Users/eyberg/.ops/images/postgres

2023-06-21 04:17:55.133 UTC [23437153024] LOG: listening on IPv4 address "0.0.0.0", port 5432
2023-06-21 04:17:55.136 UTC [23437153024] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"
2023-06-21 04:17:55.173 UTC [23437153024] LOG: could not resolve "localhost": Temporary failure
2023-06-21 04:17:55.176 UTC [23437153024] LOG: disabling statistics collector for lack of workin
2023-06-21 04:17:55.178 UTC [23437153024] HINT: Enable the "track counts" option

2023-06-21 04:17:55.185 UTC [5052757568] L0OG: database system was shut down at 2023-06-20 19:04:
2023-06-21 04:17:55.197 UTC [23437153024] LOG: database system is ready to accept connections
enl: assigned 192.168.68.117

enl: assigned FE80::50CC:A2FF:FEA8:EBB1

Now there is clearly a lot of extra tweaking/coding that could be done to make this a lot nicer but we'll leave that as an
exercise for another day. | should state that postgres is a prime example of something that took a lot of patching to
make work in Nanos whether it is Konstantin's port or the patches we had. The vast majority of software in the web
application space doesn't take any patching - just proper configuration and normal packaging that'd you find for any
platform. Til next time.

https://nanovms.com/dev/tutorials/applying-sandbox-security-node-js-unikernels-openbsd-pledge-unveil
https://db.cs.cmu.edu/mmap-cidr2022/

Deploy Your First Open Source Unikernel
In Seconds

Get Started Now.

5 COMPANY
@

MARKETS RESOURCES

LEARN CONTACT

https://nanovms.com/press
https://nanovms.com/investors
https://nanovms.breezy.hr/
https://nanovms.com/affiliates
https://nanovms.com/markets/energy
https://nanovms.com/markets/life_sciences
https://nanovms.com/markets/health
https://nanovms.com/markets/retail
https://nanovms.com/markets/finance
https://nanovms.com/markets/gaming
https://nanovms.com/markets/telecom
https://nanovms.com/markets/education
https://nanovms.com/markets/government
https://nanovms.com/markets/hpc
https://nanovms.com/datasheets
https://nanovms.com/whitepapers
https://nanovms.com/videos
https://nanovms.com/blog
https://billing.stripe.com/p/login/00gdU20Lhg6N6ZOfYY
https://nanovms.com/learn/docker-vs-unikernels
tel:+18336266867
tel:+18336266867
https://www.linkedin.com/company/nanovms/
https://twitter.com/nanovms
https://www.youtube.com/channel/UC3mqDqCVu3moVKzmP2YNmlg
https://nanovms.com/privacy
https://nanovms.com/terms
https://nanos.org/

