
25th May 2023: PostgreSQL 16 Beta 1 Released!

F.33. pg_trgm

Prev Up Appendix F. Additional Supplied Modules Home Next

F.33. pg_trgm

F.33.1. T rigram (or T rigraph) Concepts

F.33.2. Functions and Operators

F.33.3. GUC Parameters

F.33.4. Index Support

F.33.5. T ext Search Integration

F.33.6. References

F.33.7. Authors

T he pg_trgm module provides functions and operators for determining the similarity of alphanumeric text based on trigram matching, as well as

index operator classes that support fast searching for similar strings.

T his module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE privilege on the current database.

F.33.1. Trigram (or Trigraph) Concepts

A trigram is a group of three consecutive characters taken from a string. We can measure the similarity of two strings by counting the number of

trigrams they share. T his simple idea turns out to be very e�ective for measuring the similarity of words in many natural languages.

Note

pg_trgm ignores non-word characters (non-alphanumerics) when extracting trigrams from

a string. Each word is considered to have two spaces pre�xed and one space su�xed

when determining the set of trigrams contained in the string. For example, the set of

trigrams in the string “cat” is “ c”, “ ca”, “cat”, and “at ”. T he set of trigrams in the string

“foo|bar” is “ f”, “ fo”, “foo”, “oo ”, “ b”, “ ba”, “bar”, and “ar ”.

F.33.2. Functions and Operators

T he functions provided by the pg_trgm module are shown in Table F.25, the operators in Table F.26.

Table F.25. pg_trgm Functions

Function

Description

similarity (text, text) → real

Returns a number that indicates how similar the two arguments are. The range of the result is zero (indicating that the two strings are completely dissimilar) to one (indicating that the two strings

are identical).

show_trgm (text) → text[]

Returns an array of all the trigrams in the given string. (In practice this is seldom useful except for debugging.)

word_similarity (text, text) → real

Returns a number that indicates the greatest similarity between the set of trigrams in the �rst string and any continuous extent of an ordered set of trigrams in the second string. For details, see

the explanation below.

strict_word_similarity (text, text) → real

Same as word_similarity, but forces extent boundaries to match word boundaries. Since we don't have cross-word trigrams, this function actually returns greatest similarity between �rst string

and any continuous extent of words of the second string.

show_limit () → real

Returns the current similarity threshold used by the % operator. This sets the minimum similarity between two words for them to be considered similar enough to be misspellings of each other, for

example. (Deprecated; instead use SHOW pg_trgm.similarity_threshold.)

set_limit (real) → real

Sets the current similarity threshold that is used by the % operator. The threshold must be between 0 and 1 (default is 0.3). Returns the same value passed in. (Deprecated; instead use SET

pg_trgm.similarity_threshold.)

Consider the following example:

SELECT word_similarity('word', 'two words');

 word_similarity

 0.8

(1 row)

Documentation → PostgreSQL 14

Supported Versions: Current (15) / 14 / 13 / 12 / 11

Development Versions: 16 / devel

Unsupported versions: 10 / 9.6 / 9.5 / 9.4 / 9.3 / 9.2 / 9.1 / 9.0 /

8.4 / 8.3

Search the documentation for...

https://www.postgresql.org/about/news/postgresql-16-beta-1-released-2643/
https://www.postgresql.org/docs/14/pgsurgery.html
https://www.postgresql.org/docs/14/contrib.html
https://www.postgresql.org/docs/14/index.html
https://www.postgresql.org/docs/14/pgvisibility.html
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/14/index.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://www.postgresql.org/docs/15/pgtrgm.html
https://www.postgresql.org/docs/14/pgtrgm.html
https://www.postgresql.org/docs/13/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/11/pgtrgm.html
https://www.postgresql.org/docs/16/pgtrgm.html
https://www.postgresql.org/docs/devel/pgtrgm.html
https://www.postgresql.org/docs/10/pgtrgm.html
https://www.postgresql.org/docs/9.6/pgtrgm.html
https://www.postgresql.org/docs/9.5/pgtrgm.html
https://www.postgresql.org/docs/9.4/pgtrgm.html
https://www.postgresql.org/docs/9.3/pgtrgm.html
https://www.postgresql.org/docs/9.2/pgtrgm.html
https://www.postgresql.org/docs/9.1/pgtrgm.html
https://www.postgresql.org/docs/9.0/pgtrgm.html
https://www.postgresql.org/docs/8.4/pgtrgm.html
https://www.postgresql.org/docs/8.3/pgtrgm.html

In the �rst string, the set of trigrams is {" w"," wo","wor","ord","rd "}. In the second string, the ordered set of trigrams is {" t","

tw","two","wo "," w"," wo","wor","ord","rds","ds "}. T he most similar extent of an ordered set of trigrams in the second string is

{" w"," wo","wor","ord"}, and the similarity is 0.8.

T his function returns a value that can be approximately understood as the greatest similarity between the �rst string and any substring of the

second string. However, this function does not add padding to the boundaries of the extent. T hus, the number of additional characters present

in the second string is not considered, except for the mismatched word boundaries.

At the same time, strict_word_similarity selects an extent of words in the second string. In the example above,

strict_word_similarity would select the extent of a single word 'words', whose set of trigrams is {" w","

wo","wor","ord","rds","ds "}.

SELECT strict_word_similarity('word', 'two words'), similarity('word', 'words');

 strict_word_similarity | similarity

------------------------+------------

 0.571429 | 0.571429

(1 row)

T hus, the strict_word_similarity function is useful for �nding the similarity to whole words, while word_similarity is more suitable for

�nding the similarity for parts of words.

Table F.26. pg_trgm Operators

Operator

Description

text % text → boolean

Returns true if its arguments have a similarity that is greater than the current similarity threshold set by pg_trgm.similarity_threshold.

text <% text → boolean

Returns true if the similarity between the trigram set in the �rst argument and a continuous extent of an ordered trigram set in the second argument is greater than the current word similarity

threshold set by pg_trgm.word_similarity_threshold parameter.

text %> text → boolean

Commutator of the <% operator.

text <<% text → boolean

Returns true if its second argument has a continuous extent of an ordered trigram set that matches word boundaries, and its similarity to the trigram set of the �rst argument is greater than the

current strict word similarity threshold set by the pg_trgm.strict_word_similarity_threshold parameter.

text %>> text → boolean

Commutator of the <<% operator.

text <-> text → real

Returns the “distance” between the arguments, that is one minus the similarity() value.

text <<-> text → real

Returns the “distance” between the arguments, that is one minus the word_similarity() value.

text <->> text → real

Commutator of the <<-> operator.

text <<<-> text → real

Returns the “distance” between the arguments, that is one minus the strict_word_similarity() value.

text <->>> text → real

Commutator of the <<<-> operator.

F.33.3. GUC Parameters

pg_trgm.similarity_threshold (real)

Sets the current similarity threshold that is used by the % operator. T he threshold must be between 0 and 1 (default is 0.3).

pg_trgm.word_similarity_threshold (real)

Sets the current word similarity threshold that is used by the <% and %> operators. T he threshold must be between 0 and 1 (default is

0.6).

pg_trgm.strict_word_similarity_threshold (real)

Sets the current strict word similarity threshold that is used by the <<% and %>> operators. T he threshold must be between 0 and 1

(default is 0.5).

F.33.4. Index Support

T he pg_trgm module provides GiST and GIN index operator classes that allow you to create an index over a text column for the purpose of very

fast similarity searches. T hese index types support the above-described similarity operators, and additionally support trigram-based index

searches for LIKE, ILIKE, ~, ~* and = queries. Inequality operators are not supported. Note that those indexes may not be as e�cient as

regular B-tree indexes for equality operator.

Example:

CREATE TABLE test_trgm (t text);

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);

or

CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);

gist_trgm_ops GiST opclass approximates a set of trigrams as a bitmap signature. Its optional integer parameter siglen determines the

signature length in bytes. T he default length is 12 bytes. Valid values of signature length are between 1 and 2024 bytes. Longer signatures lead to

a more precise search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops(siglen=32));

At this point, you will have an index on the t column that you can use for similarity searching. A typical query is

SELECT t, similarity(t, 'word') AS sml

 FROM test_trgm

 WHERE t % 'word'

 ORDER BY sml DESC, t;

T his will return all values in the text column that are su�ciently similar to word, sorted from best match to worst. T he index will be used to make

this a fast operation even over very large data sets.

A variant of the above query is

SELECT t, t <-> 'word' AS dist

 FROM test_trgm

 ORDER BY dist LIMIT 10;

T his can be implemented quite e�ciently by GiST indexes, but not by GIN indexes. It will usually beat the �rst formulation when only a small

number of the closest matches is wanted.

Also you can use an index on the t column for word similarity or strict word similarity. T ypical queries are:

SELECT t, word_similarity('word', t) AS sml

 FROM test_trgm

 WHERE 'word' <% t

 ORDER BY sml DESC, t;

and

SELECT t, strict_word_similarity('word', t) AS sml

 FROM test_trgm

 WHERE 'word' <<% t

 ORDER BY sml DESC, t;

T his will return all values in the text column for which there is a continuous extent in the corresponding ordered trigram set that is su�ciently

similar to the trigram set of word, sorted from best match to worst. T he index will be used to make this a fast operation even over very large

data sets.

Possible variants of the above queries are:

SELECT t, 'word' <<-> t AS dist

 FROM test_trgm

 ORDER BY dist LIMIT 10;

and

SELECT t, 'word' <<<-> t AS dist

 FROM test_trgm

 ORDER BY dist LIMIT 10;

T his can be implemented quite e�ciently by GiST indexes, but not by GIN indexes.

Beginning in PostgreSQL 9.1, these index types also support index searches for LIKE and ILIKE, for example

SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';

T he index search works by extracting trigrams from the search string and then looking these up in the index. T he more trigrams in the search

string, the more e�ective the index search is. Unlike B-tree based searches, the search string need not be left-anchored.

Beginning in PostgreSQL 9.3, these index types also support index searches for regular-expression matches (~ and ~* operators), for example

SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';

T he index search works by extracting trigrams from the regular expression and then looking these up in the index. T he more trigrams that can be

extracted from the regular expression, the more e�ective the index search is. Unlike B-tree based searches, the search string need not be left-

anchored.

For both LIKE and regular-expression searches, keep in mind that a pattern with no extractable trigrams will degenerate to a full-index scan.

T he choice between GiST and GIN indexing depends on the relative performance characteristics of GiST and GIN, which are discussed elsewhere.

F.33.5. Text Search Integration

T rigram matching is a very useful tool when used in conjunction with a full text index. In particular it can help to recognize misspelled input words

that will not be matched directly by the full text search mechanism.

T he �rst step is to generate an auxiliary table containing all the unique words in the documents:

CREATE TABLE words AS SELECT word FROM

 ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');

where documents is a table that has a text �eld bodytext that we wish to search. T he reason for using the simple con�guration with the

to_tsvector function, instead of using a language-speci�c con�guration, is that we want a list of the original (unstemmed) words.

Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);

Now, a SELECT query similar to the previous example can be used to suggest spellings for misspelled words in user search terms. A useful extra

test is to require that the selected words are also of similar length to the misspelled word.

Note

Since the words table has been generated as a separate, static table, it will need to be

periodically regenerated so that it remains reasonably up-to-date with the document

collection. Keeping it exactly current is usually unnecessary.

F.33.6. References

GiST Development Site http://www.sai.msu.su/~megera/postgres/gist/

T search2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.33.7. Authors

Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

T eodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia

Documentation: Christopher Kings-Lynne

T his module is sponsored by Delta-Soft Ltd., Moscow, Russia.

Prev Up Next

F.32. pg_surgery Home F.34. pg_visibility

Submit correction

If you see anything in the documentation that is not correct, does not match your experience with the particular feature or requires

further clari�cation, please use this form to report a documentation issue.

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/
mailto:oleg@sai.msu.su
mailto:teodor@sigaev.ru
mailto:a.korotkov@postgrespro.ru
https://www.postgresql.org/docs/14/pgsurgery.html
https://www.postgresql.org/docs/14/contrib.html
https://www.postgresql.org/docs/14/pgvisibility.html
https://www.postgresql.org/docs/14/index.html
https://www.postgresql.org/account/comments/new/14/pgtrgm.html/

Privacy Policy | Code of Conduct | About PostgreSQL | Contact

Copyright © 1996-2023 The PostgreSQL Global Development Group

https://www.postgresql.org/about/privacypolicy
https://www.postgresql.org/about/policies/coc/
https://www.postgresql.org/about/
https://www.postgresql.org/about/contact/
https://twitter.com/postgresql
https://git.postgresql.org/gitweb/?p=postgresql.git

