
OpenAI's GPT (generative pre-trained transformer) models have been trained to understand natural
language and code. GPTs provide text outputs in response to their inputs. The inputs to GPTs are also
referred to as "prompts". Designing a prompt is essentially how you “program” a GPT model, usually
by providing instructions or some examples of how to successfully complete a task.

Using GPTs, you can build applications to:

...and much more!

To use a GPT model via the OpenAI API, you’ll send a request containing the inputs and your API key,
and receive a response containing the model’s output. Our latest models, gpt-4 and gpt-3.5-
turbo , are accessed through the chat completions API endpoint. Currently, only the older legacy
models are available via the completions API endpoint.

M O DEL FAM I LI ES AP I EN DP O I N T

Newer models
(2023–)

gpt-4, gpt-3.5-turbo https://api.openai.com/v1/chat/completions

Older models
(2020–2022)

text-davinci-003, text-davinci-002,
davinci, curie, babbage, ada

https://api.openai.com/v1/completions

You can experiment with GPTs in the playground. If you’re not sure which model to use, then use gpt-
3.5-turbo or gpt-4 .

GPT models

Looking for ChatGPT? Head to chat.openai.com.

Draft documents

Write computer code

Answer questions about a knowledge base

Analyze texts

Create conversational agents

Give software a natural language interface

Tutor in a range of subjects

Translate languages

Simulate characters for games

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/gpt-models
https://api.openai.com/v1/chat/completions
https://api.openai.com/v1/completions
https://platform.openai.com/playground?mode=chat
https://chat.openai.com/
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

Chat models take a list of messages as input and return a model-generated message as output.
Although the chat format is designed to make multi-turn conversations easy, it’s just as useful for
single-turn tasks without any conversation.

An example API call looks as follows:

See the full API reference documentation here.

The main input is the messages parameter. Messages must be an array of message objects, where
each object has a role (either "system", "user", or "assistant") and content. Conversations can be as
short as one message or many back and forth turns.

Typically, a conversation is formatted with a system message first, followed by alternating user and
assistant messages.

The system message helps set the behavior of the assistant. For example, you can modify the
personality of the assistant or provide specific instructions about how it should behave throughout the
conversation. However note that the system message is optional and the model’s behavior without a
system message is likely to be similar to using a generic message such as "You are a helpful
assistant."

The user messages provide requests or comments for the assistant to respond to. Assistant messages
store previous assistant responses, but can also be written by you to give examples of desired
behavior.

Including conversation history is important when user instructions refer to prior messages. In the
example above, the user’s final question of "Where was it played?" only makes sense in the context of
the prior messages about the World Series of 2020. Because the models have no memory of past
requests, all relevant information must be supplied as part of the conversation history in each request.
If a conversation cannot fit within the model’s token limit, it will need to be shortened in some way.

Chat Completions API

1

2

3

4

5

6

7

8

9

10

11

import openai

openai.ChatCompletion.create(

 model="gpt-3.5-turbo",

 messages=[

 {"role": "system", "content": "You are a helpful assistant."},

 {"role": "user", "content": "Who won the world series in 2020?"},

 {"role": "assistant", "content": "The Los Angeles Dodgers won the World

 {"role": "user", "content": "Where was it played?"}

]

)

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/chat-completions-api
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/guides/gpt-best-practices/tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

An example chat completions API response looks as follows:

In Python, the assistant’s reply can be extracted with response['choices'][0]['message']
['content'] .

Every response will include a finish_reason . The possible values for finish_reason are:

To mimic the effect seen in ChatGPT where the text is returned iteratively, set the stream
parameter to true.

Chat completions response format

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

{

 "choices": [

 {

 "finish_reason": "stop",

 "index": 0,

 "message": {

 "content": "The 2020 World Series was played in Texas at Globe Life Fie

 "role": "assistant"

 }

 }

],

 "created": 1677664795,

 "id": "chatcmpl-7QyqpwdfhqwajicIEznoc6Q47XAyW",

 "model": "gpt-3.5-turbo-0613",

 "object": "chat.completion",

 "usage": {

 "completion_tokens": 17,

 "prompt_tokens": 57,

 "total_tokens": 74

 }

}

stop : API returned complete message, or a message terminated by one of the stop sequences
provided via the stop parameter

length : Incomplete model output due to max_tokens parameter or token limit

function_call : The model decided to call a function

content_filter : Omitted content due to a flag from our content filters

null : API response still in progress or incomplete

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/chat-completions-response-format
https://platform.openai.com/docs/api-reference/chat/create#chat/create-stream
https://platform.openai.com/docs/api-reference/chat/create#chat/create-stop
https://platform.openai.com/docs/api-reference/chat/create#chat/create-max_tokens
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

Depending on input parameters (like providing functions as shown below), the model response may
include different information.

In an API call, you can describe functions to gpt-3.5-turbo-0613 and gpt-4-0613 , and have the
model intelligently choose to output a JSON object containing arguments to call those functions. The
Chat Completions API does not call the function; instead, the model generates JSON that you can use
to call the function in your code.

The latest models (gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to both detect
when a function should to be called (depending on the input) and to respond with JSON that adheres
to the function signature. With this capability also comes potential risks. We strongly recommend
building in user confirmation flows before taking actions that impact the world on behalf of users
(sending an email, posting something online, making a purchase, etc).

Function calling allows you to more reliably get structured data back from the model. For example, you
can:

...and much more!

The basic sequence of steps for function calling is as follows:

Function calling

Under the hood, functions are injected into the system message in a syntax the model has
been trained on. This means functions count against the model's context limit and are billed
as input tokens. If running into context limits, we suggest limiting the number of functions or
the length of documentation you provide for function parameters.

Create chatbots that answer questions by calling external APIs (e.g. like ChatGPT Plugins)

e.g. define functions like send_email(to: string, body: string) , or
get_current_weather(location: string, unit: 'celsius' | 'fahrenheit')

Convert natural language into API calls

e.g. convert "Who are my top customers?" to get_customers(min_revenue: int,
created_before: string, limit: int) and call your internal API

Extract structured data from text

e.g. define a function called extract_data(name: string, birthday: string) , or
sql_query(query: string)

Call the model with the user query and a set of functions defined in the functions parameter.1

The model can choose to call a function; if so, the content will be a stringified JSON object
adhering to your custom schema (note: the model may generate invalid JSON or hallucinate
parameters).

2

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/api-reference/chat/create#chat/create-functions
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

You can see these steps in action through the example below:

Parse the string into JSON in your code, and call your function with the provided arguments if they
exist.

3

Call the model again by appending the function response as a new message, and let the model
summarize the results back to the user.

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

import openai

import json

Example dummy function hard coded to return the same weather

In production, this could be your backend API or an external API

def get_current_weather(location, unit="fahrenheit"):

 """Get the current weather in a given location"""

 weather_info = {

 "location": location,

 "temperature": "72",

 "unit": unit,

 "forecast": ["sunny", "windy"],

 }

 return json.dumps(weather_info)

Step 1, send model the user query and what functions it has access to

def run_conversation():

 response = openai.ChatCompletion.create(

 model="gpt-3.5-turbo-0613",

 messages=[{"role": "user", "content": "What's the weather like in Bosto

 functions=[

 {

 "name": "get_current_weather",

 "description": "Get the current weather in a given location",

 "parameters": {

 "type": "object",

 "properties": {

 "location": {

 "type": "string",

 "description": "The city and state, e.g. San Franci

 },

 "unit": {"type": "string", "enum": ["celsius", "fahrenh

 },

 "required": ["location"],

 },

 }

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

In the example above, we sent the function response back to the model and let it decide the next step.
It responded with a user-facing message which was telling the user the temperature in Boston, but
depending on the query, it may choose to call a function again.

For example, if you ask the model “Find the weather in Boston this weekend, book dinner for two on
Saturday, and update my calendar” and provide the corresponding functions for these queries, it may
choose to call them back to back and only at the end create a user-facing message.

If you want to force the model to generate a user-facing message, you can do so by setting
function_call: "none" (if no functions are provided, no functions will be called).

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

],

 function_call="auto",

)

 message = response["choices"][0]["message"]

 # Step 2, check if the model wants to call a function

 if message.get("function_call"):

 function_name = message["function_call"]["name"]

 # Step 3, call the function

 # Note: the JSON response from the model may not be valid JSON

 function_response = get_current_weather(

 location=message.get("location"),

 unit=message.get("unit"),

)

 # Step 4, send model the info on the function call and function respons

 second_response = openai.ChatCompletion.create(

 model="gpt-3.5-turbo-0613",

 messages=[

 {"role": "user", "content": "What is the weather like in boston

 message,

 {

 "role": "function",

 "name": function_name,

 "content": function_response,

 },

],

)

 return second_response

print(run_conversation())

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

You can find more examples of function calling in the OpenAI cookbook:

Function calling
Learn how to use function calling via the API in simple and advanced use cases

The completions API endpoint has a different interface than the chat completions endpoint. Instead
of the input being a list of messages, the input is a freeform text string called prompt .

An example API call looks as follows:

See the full API reference documentation to learn more.

The completions API can provide a limited number of log probabilities associated with the most likely
tokens for each output token. This feature is controlled by using the logprobs field. This can be useful
in some cases to assess the confidence of the model in its output.

The completions endpoint also supports inserting text by providing a suffix in addition to the standard
prompt which is treated as a prefix. This need naturally arises when writing long-form text,
transitioning between paragraphs, following an outline, or guiding the model towards an ending. This
also works on code, and can be used to insert in the middle of a function or file.

DEEP DI VE

Inserting text

An example completions API response looks as follows:

Completions API

1

2

3

4

5

6

import openai

response = openai.Completion.create(

 model="text-davinci-003",

 prompt="Write a tagline for an ice cream shop."

)

Token log probabilities

Inserting text

Completions response format

Overview Documentation API reference Examples Log in Sign up

https://github.com/openai/openai-cookbook/blob/main/examples/How_to_call_functions_with_chat_models.ipynb
https://platform.openai.com/docs/guides/gpt/completions-api
https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/guides/gpt/token-log-probabilities
https://platform.openai.com/docs/api-reference/completions/create#completions/create-logprobs
https://platform.openai.com/docs/guides/gpt/inserting-text
https://platform.openai.com/docs/api-reference/completions/create#completions/create-suffix
https://platform.openai.com/docs/guides/gpt/completions-response-format
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

In Python, the output can be extracted with response['choices'][0]['text'] .

The response format is similar to the response format of the chat completions API but also includes
the optional field logprobs .

The chat completions format can be made similar to the completions format by constructing a
request using a single user message. For example, one can translate from English to French with the
following completions prompt:

And an equivalent chat prompt would be:

Likewise, the completions API can be used to simulate a chat between a user and an assistant by
formatting the input accordingly.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

{

 "choices": [

 {

 "finish_reason": "length",

 "index": 0,

 "logprobs": null,

 "text": "\n\n\"Let Your Sweet Tooth Run Wild at Our Creamy Ice Cream Shac

 }

],

 "created": 1683130927,

 "id": "cmpl-7C9Wxi9Du4j1lQjdjhxBlO22M61LD",

 "model": "text-davinci-003",

 "object": "text_completion",

 "usage": {

 "completion_tokens": 16,

 "prompt_tokens": 10,

 "total_tokens": 26

 }

}

Chat Completions vs. Completions

Translate the following English text to French: "{text}"

[{"role": "user", "content": 'Translate the following English text to French: "{tex

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/chat-completions-vs-completions
https://platform.openai.com/playground/p/default-chat?model=text-davinci-003
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

The difference between these APIs derives mainly from the underlying GPT models that are available
in each. The chat completions API is the interface to our most capable model (gpt-4), and our most
cost effective model (gpt-3.5-turbo). For reference, gpt-3.5-turbo performs at a similar
capability level to text-davinci-003 but at 10% the price per token! See pricing details here.

We generally recommend that you use either gpt-4 or gpt-3.5-turbo . Which of these you should
use depends on the complexity of the tasks you are using the models for. gpt-4 generally performs
better on a wide range of evaluations. In particular, gpt-4 is more capable at carefully following
complex instructions. By contrast gpt-3.5-turbo is more likely to follow just one part of a complex
multi-part instruction. gpt-4 is less likely than gpt-3.5-turbo to make up information, a behavior
known as "hallucination". gpt-4 also has a larger context window with a maximum size of 8,192
tokens compared to 4,096 tokens for gpt-3.5-turbo . However, gpt-3.5-turbo returns outputs with
lower latency and costs much less per token.

We recommend experimenting in the playground to investigate which models provide the best price
performance trade-off for your usage. A common design pattern is to use several distinct query types
which are each dispatched to the model appropriate to handle them.

An awareness of the best practices for working with GPTs can make a significant difference in
application performance. The failure modes that GPTs exhibit and the ways of working around or
correcting those failure modes are not always intuitive. There is a skill to working with GPTs which has
come to be known as “prompt engineering”, but as the field has progressed its scope has outgrown
merely engineering the prompt into engineering systems that use model queries as components. To
learn more, read our guide on GPT best practices which covers methods to improve model reasoning,
reduce the likelihood of model hallucinations, and more. You can also find many useful resources
including code samples in the OpenAI Cookbook.

Language models read and write text in chunks called tokens. In English, a token can be as short as
one character or as long as one word (e.g., a or apple), and in some languages tokens can be even
shorter than one character or even longer than one word.

For example, the string "ChatGPT is great!" is encoded into six tokens: ["Chat", "G", "PT", "
is", " great", "!"] .

The total number of tokens in an API call affects:

Which model should I use?

GPT best practices

Managing tokens

How much your API call costs, as you pay per token

How long your API call takes, as writing more tokens takes more time

Overview Documentation API reference Examples Log in Sign up

https://openai.com/pricing
https://platform.openai.com/docs/guides/gpt/which-model-should-i-use
https://arxiv.org/abs/2303.08774
https://platform.openai.com/playground?mode=chat
https://platform.openai.com/docs/guides/gpt/gpt-best-practices
https://platform.openai.com/docs/guides/gpt-best-practices
https://github.com/openai/openai-cookbook
https://platform.openai.com/docs/guides/gpt/managing-tokens
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

Both input and output tokens count toward these quantities. For example, if your API call used 10
tokens in the message input and you received 20 tokens in the message output, you would be billed for
30 tokens. Note however that for some models the price per token is different for tokens in the input
vs. the output (see the pricing page for more information).

To see how many tokens are used by an API call, check the usage field in the API response (e.g.,
response['usage']['total_tokens']).

Chat models like gpt-3.5-turbo and gpt-4 use tokens in the same way as the models available in
the completions API, but because of their message-based formatting, it's more difficult to count how
many tokens will be used by a conversation.

DEEP DI VE

Counting tokens for chat API calls

To see how many tokens are in a text string without making an API call, use OpenAI’s tiktoken Python
library. Example code can be found in the OpenAI Cookbook’s guide on how to count tokens with
tiktoken.

Each message passed to the API consumes the number of tokens in the content, role, and other fields,
plus a few extra for behind-the-scenes formatting. This may change slightly in the future.

If a conversation has too many tokens to fit within a model’s maximum limit (e.g., more than 4096
tokens for gpt-3.5-turbo), you will have to truncate, omit, or otherwise shrink your text until it fits.
Beware that if a message is removed from the messages input, the model will lose all knowledge of it.

Note that very long conversations are more likely to receive incomplete replies. For example, a gpt-
3.5-turbo conversation that is 4090 tokens long will have its reply cut off after just 6 tokens.

The API is non-deterministic by default. This means that you might get a slightly different completion
every time you call it, even if your prompt stays the same. Setting temperature to 0 will make the
outputs mostly deterministic, but a small amount of variability will remain.

Whether your API call works at all, as total tokens must be below the model’s maximum limit
(4096 tokens for gpt-3.5-turbo)

FAQ

Why are model outputs inconsistent?

How should I set the temperature parameter?

Overview Documentation API reference Examples Log in Sign up

https://openai.com/pricing
https://github.com/openai/tiktoken
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://platform.openai.com/docs/guides/gpt/faq
https://platform.openai.com/docs/guides/gpt/why-are-model-outputs-inconsistent
https://platform.openai.com/docs/guides/gpt/how-should-i-set-the-temperature-parameter
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

Lower values for temperature result in more consistent outputs, while higher values generate more
diverse and creative results. Select a temperature value based on the desired trade-off between
coherence and creativity for your specific application.

No. Currently, you can only fine-tune base GPT-3 models (davinci , curie , babbage , and ada).
See the fine-tuning guide for more details on how to use fine-tuned models.

As of March 1st, 2023, we retain your API data for 30 days but no longer use your data sent via the
API to improve our models. Learn more in our data usage policy. Some endpoints offer zero retention.

If you want to add a moderation layer to the outputs of the Chat API, you can follow our moderation
guide to prevent content that violates OpenAI’s usage policies from being shown.

ChatGPT offers a chat interface to the models in the OpenAI API and a range of built-in features such

Is fine-tuning available for the latest models?

Do you store the data that is passed into the API?

How can I make my application more safe?

Should I use ChatGPT or the API?

Overview Documentation API reference Examples Log in Sign up

https://platform.openai.com/docs/guides/gpt/is-fine-tuning-available-for-the-latest-models
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/gpt/do-you-store-the-data-that-is-passed-into-the-api
https://openai.com/policies/usage-policies
https://platform.openai.com/docs/models/default-usage-policies-by-endpoint
https://platform.openai.com/docs/guides/gpt/how-can-i-make-my-application-more-safe
https://platform.openai.com/docs/guides/moderation
https://platform.openai.com/docs/guides/gpt/should-i-use-chatgpt-or-the-api
https://chat.openai.com/
https://platform.openai.com/overview
https://platform.openai.com/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/api-reference
https://platform.openai.com/examples
https://platform.openai.com/signup

