
spamscanner / spamscanner Public

Spam Scanner is a Node.js anti-spam, email filtering, and phishing prevention tool and service. Built for @ladjs,
@forwardemail, @cabinjs, @breejs, and @lassjs.

spamscanner.net

 View license

 213 stars 28 forks

View code

CICI passingpassing code stylecode style XOXO styled withstyled with prettierprettier made withmade with lasslass licenselicense not identifiable by githubnot identifiable by github

Spam Scanner is the best anti-spam, email filtering, and phishing prevention service.

Spam Scanner is a drop-in replacement and the best alternative to SpamAssassin, rspamd, SpamTitan, and
more.

 Star Notifications

Code Issues 8 Pull requests 1 Discussions Actions Projects Security Ins

 master Go to file

titanism 5.1.5 … on Jun 13, 2022 154

README.md

https://github.com/spamscanner
https://github.com/spamscanner/spamscanner
https://github.com/ladjs
https://github.com/forwardemail
https://github.com/cabinjs
https://github.com/breejs
https://github.com/lassjs
https://spamscanner.net/
https://github.com/spamscanner/spamscanner/blob/master/LICENSE
https://github.com/spamscanner/spamscanner/stargazers
https://github.com/spamscanner/spamscanner/forks
https://spamscanner.net/
https://github.com/spamscanner/spamscanner/actions/workflows/ci.yml
https://github.com/sindresorhus/xo
https://github.com/prettier/prettier
https://lass.js.org/
https://github.com/spamscanner/spamscanner/blob/master/LICENSE
https://en.wikipedia.org/wiki/Anti-spam_techniques
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Phishing
https://github.com/login?return_to=%2Fspamscanner%2Fspamscanner
https://github.com/login?return_to=%2Fspamscanner%2Fspamscanner
https://github.com/spamscanner/spamscanner
https://github.com/spamscanner/spamscanner/issues
https://github.com/spamscanner/spamscanner/pulls
https://github.com/spamscanner/spamscanner/discussions
https://github.com/spamscanner/spamscanner/actions
https://github.com/spamscanner/spamscanner/projects
https://github.com/spamscanner/spamscanner/security
https://github.com/spamscanner/spamscanner/pulse
https://github.com/spamscanner/spamscanner/find/master
https://github.com/spamscanner/spamscanner/commits?author=titanism
https://github.com/spamscanner/spamscanner/commit/9a0122fb775fe010fd87b81943c20c4e81311db1
https://github.com/spamscanner/spamscanner/commit/9a0122fb775fe010fd87b81943c20c4e81311db1
https://github.com/spamscanner/spamscanner/commits/master
https://github.com/titanism

Table of Contents

Foreword

Features
Naive Bayes Classifier

Spam Content Detection

Phishing Content Detection

Executable Link and Attachment Detection

Virus Detection

NSFW Image Detection

Algorithm

Requirements
ClamAV Configuration

Install

Usage

API
const scanner = new SpamScanner(options)

scanner.scan(source)

scanner.getTokensAndMailFromSource(source)

scanner.getClassification(tokens)

scanner.getPhishingResults(mail)

scanner.getExecutableResults(mail)

scanner.getTokens(str, locale, isHTML = false)

scanner.getArbitraryResults(mail)

scanner.getVirusResults(mail)

scanner.parseLocale(locale)

Caching

Debugging

Contributors

References

License

Foreword

Spam Scanner is a tool and service created after hitting countless roadblocks with existing spam-detection
solutions. In other words, it's our current plan for spam.

Our goal is to build and utilize a scalable, performant, simple, easy to maintain, and powerful API for use in
our service at Forward Email to limit spam and provide other measures to prevent attacks on our users.

http://www.paulgraham.com/spam.html
http://www.paulgraham.com/better.html
https://forwardemail.net/

Initially we tried using SpamAssassin, and later evaluated rspamd – but in the end we learned that all
existing solutions (even ones besides these) are overtly complex, missing required features or
documentation, incredibly challenging to configure; high-barrier to entry, or have proprietary storage
backends (that could store and read your messages without your consent) that limit our scalability.

To us, we value privacy and the security of our data and users – specifically we have a "Zero-Tolerance
Policy" on storing logs or metadata of any kind, whatsoever (see our Privacy Policy for more on that). None
of these solutions honored this privacy policy (without removing essential spam-detection functionality), so
we had to create our own tool – thus "Spam Scanner" was born.

The solution we created provides several Features and is completely configurable to your liking. You can
learn more about the actual Algorithm below. Contributors are welcome.

Features

Spam Scanner includes modern, essential, and performant features that to help reduce spam, phishing, and
executable attacks.

Naive Bayes Classifier

Our Naive Bayesian classifier is available in this repository, the npm package, and is updated frequently as it
gains upstream, anonymous, SHA-256 hashed data from Forward Email.

It was trained with an extremely large dataset of spam, ham, and abuse reporting format ("ARF") data. This
dataset was compiled privately from multiple sources.

Spam Content Detection

Provides an out of the box trained Naive Bayesian classifier (uses naivebayes and natural under the hood),
which is sourced from hundreds of thousands of spam and ham emails. This classifier relies upon tokenized
and stemmed words (with respect to the language of the email as well) into two categories ("spam" and
"ham").

Phishing Content Detection

Robust phishing detection approach which prevents domain swapping, IDN homograph attacks, and more.

Executable Link and Attachment Detection

Link and attachment detection techniques that checks links in the message, "Content-Type" headers, file
extensions, magic number, and prevents homograph attacks on file names – all against a list of executable
file extensions.

Virus Detection

Using ClamAV, it scans email attachments (including embedded CID images) for trojans, viruses, malware,
and/or other malicious threats.

https://spamassassin.apache.org/
https://rspamd.com/
https://forwardemail.net/privacy
https://github.com/spamscanner/spamscanner/blob/master/classifier.json
https://forwardemail.net/
https://github.com/ladjs/naivebayes
https://github.com/NaturalNode/natural
https://en.wikipedia.org/wiki/IDN_homograph_attack
https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files
https://en.wikipedia.org/wiki/IDN_homograph_attack
https://github.com/spamscanner/spamscanner/blob/master/executables.json

NSFW Image Detection

We have plans to add NSFW image detection and opt-in toxicity detection as well.

Algorithm

In a nutshell, here is how the Spam Scanner algorithm works:

1. A message is passed to Spam Scanner, known as the "source".

2. In parallel and asynchronously, the source is passed to functions that detect the following:

Classification

Phishing

Executables

Arbitrary

Viruses

3. After all functions complete, if any returned a value indicating it is spam, then the source is considered
to be spam. A detailed result object is provided for inspection into the reason(s).

We have extensively documented the API which provides insight into how each of these functions work.

Requirements

Note that you can simply use the Spam Scanner API for free at https://spamscanner.net instead of having to
independently maintain and self-host your own instance.

Dependency Description

Node.js

You must install Node.js in order to use this project as it is Node.js based. We
recommend using nvm and installing the latest with nvm install --lts . If you simply

want to use the Spam Scanner API, visit the website at https://spamscanner.net for
more information.

Cloudflare

You can optionally set 1.1.1.3 and 1.0.0.3 as your DNS servers as we use DNS
over HTTPS to perform a lookup on links, with a fallback to the DNS servers set on the
system itself if the DNS over HTTPS request fails. We use Cloudflare for Family for
detecting phishing and malware links.

ClamAV
You must install ClamAV on your system as we use it to scan for viruses. See ClamAV
Configuration below.

ClamAV Configuration

Ubuntu

1. Install ClamAV:

https://github.com/infinitered/nsfwjs
https://github.com/tensorflow/tfjs-models/tree/master/toxicity
https://spamscanner.net/
https://nodejs.org/
https://github.com/nvm-sh/nvm
https://spamscanner.net/
https://cloudflare.com/
https://www.clamav.net/

You may need to run sudo freshclam -v if you receive an error when checking sudo service

clamav-daemon status , but it is unlikely and depends on your distro.

2. Configure ClamAV:

3. Ensure that ClamAV starts on boot:

macOS

1. Install ClamAV:

2. Configure ClamAV:

sudo apt-get update

sudo apt-get install build-essential clamav-daemon clamav-freshclam clamav-unofficial-sig
sudo service clamav-daemon start

sudo vim /etc/clamav/clamd.conf

-Example
+#Example

-#StreamMaxLength 10M
+StreamMaxLength 50M

+# this file path may be different on your OS (that's OK)

\-#LocalSocket /tmp/clamd.socket

\+LocalSocket /tmp/clamd.socket

sudo vim /etc/clamav/freshclam.conf

-Example

+#Example

systemctl enable freshclamd
systemctl enable clamd

systemctl start freshclamd

systemctl start clamd

brew install clamav

if you are on Intel macOS

sudo mv /usr/local/etc/clamav/clamd.conf.sample /usr/local/etc/clamav/clamd.conf

3. Ensure that ClamAV starts on boot:

If you are on Intel macOS:

if you are on M1 macOS (or newer brew which installs to `/opt/homebrew`)

sudo mv /opt/homebrew/etc/clamav/clamd.conf.sample /opt/homebrew/etc/clamav/clamd.conf

if you are on Intel macOS

sudo vim /usr/local/etc/clamav/clamd.conf

if you are on M1 macOS (or newer brew which installs to `/opt/homebrew`)
sudo vim /opt/homebrew/etc/clamav/clamd.conf

-Example

+#Example

-#StreamMaxLength 10M

+StreamMaxLength 50M

+# this file path may be different on your OS (that's OK)

\-#LocalSocket /tmp/clamd.socket
\+LocalSocket /tmp/clamd.socket

if you are on Intel macOS

sudo mv /usr/local/etc/clamav/freshclam.conf.sample /usr/local/etc/clamav/freshclam.conf

if you are on M1 macOS (or newer brew which installs to `/opt/homebrew`)

sudo mv /opt/homebrew/etc/clamav/freshclam.conf.sample /opt/homebrew/etc/clamav/freshclam

if you are on Intel macOS

sudo vim /usr/local/etc/clamav/freshclam.conf

if you are on M1 macOS (or newer brew which installs to `/opt/homebrew`)
sudo vim /opt/homebrew/etc/clamav/freshclam.conf

-Example

+#Example

freshclam

sudo vim /Library/LaunchDaemons/org.clamav.clamd.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

If you are on M1 macOS (or newer brew which installs to /opt/homebrew)

4. Enable it and start it on boot:

5. You may want to periodically run freshclam to update the config, or configure a similar plist

configuration for launchctl .

Install

npm:

<plist version="1.0">

<dict>
 <key>Label</key>

 <string>org.clamav.clamd</string>

 <key>KeepAlive</key>

 <true/>
 <key>Program</key>

 <string>/usr/local/sbin/clamd</string>

 <key>ProgramArguments</key>
 <array>

 <string>clamd</string>

 </array>
 <key>RunAtLoad</key>

 <true/>

</dict>

</plist>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

<plist version="1.0">

<dict>
 <key>Label</key>

 <string>org.clamav.clamd</string>

 <key>KeepAlive</key>

 <true/>
 <key>Program</key>

 <string>/opt/homebrew/sbin/clamd</string>

 <key>ProgramArguments</key>
 <array>

 <string>clamd</string>

 </array>
 <key>RunAtLoad</key>

 <true/>

</dict>

</plist>

sudo launchctl load /Library/LaunchDaemons/org.clamav.clamd.plist

sudo launchctl start /Library/LaunchDaemons/org.clamav.clamd.plist

https://www.npmjs.com/

Usage

API

const scanner = new SpamScanner(options)

The SpamScanner class accepts an optional options Object of options to configure the spam scanner
instance being created. It returns a new instance referred to commonly as a scanner .

npm install spamscanner

const fs = require('fs');

const path = require('path');

const SpamScanner = require('spamscanner');

const scanner = new SpamScanner();

//

// NOTE: The `source` argument is the full raw email to be scanned
// and you can pass it as String, Buffer, or valid file path

//

const source = fs.readFileSync(
 path.join(__dirname, 'test', 'fixtures', 'spam.eml')

);

// async/await usage

(async () => {

 try {

 const scan = await scanner.scan(source);
 console.log('scan', scan);

 } catch (err) {

 console.error(err);
 }

});

// then/catch usage

scanner

 .scan(source)

 .then(scan => console.log('scan', scan))
 .catch(console.error);

// callback usage
if (err) return console.error(err);

scanner.scan(source, (err, scan) => {

 if (err) return console.error(err);

 console.log('scan', scan);
});

We have configured the scanner defaults to utilize a default classifier, and sensible options for ensuring
scanning works properly.

For a list of all options and their defaults, see the index.js file in the root of this repository.

scanner.scan(source)

NOTE: This is most useful method of this API as it returns the scanned results of a scanned message.

Accepts a required source (String, Buffer, or file path) argument which points to (or is) a complete and raw
SMTP message (e.g. it includes headers and the full email). Commonly this is known as an "eml" file type
and contains the extension .eml , however you can pass a String or Buffer representation instead of a file

path.

This method returns a Promise that resolves with a scan Object when scanning is completed. You can also
use this method with a second callback argument.

The scanned results are returned as an Object with the following properties (descriptions of each property
are listed below):

Property Type Description

is_spam Boolean

A value of true is returned if category property of the

results.classification Object was determined to be
"spam" , results.phishing was not empty, or

results.executables was not empty – otherwise its value

is false

message String

A human-friendly message indicating why the source was

classified as spam or ham (e.g. all messages/reasons from
results.classification , results.phishing , and
results.executables are joined together)

results Object
An Object of properties that provide detailed information
about the scan (very useful for debugging)

{

 is_spam: Boolean,

 message: String,
 results: {

 classification: Object,

 phishing: Array,
 executables: Array,

 arbitrary: Array

 },

 links: Array,
 tokens: Array,

 mail: Object

}

https://github.com/spamscanner/spamscanner/blob/master/index.js

Property Type Description

results.classification Object
An Object with category (String) and probability

(Number) values returned based off the categorization of the

source from the Naive Bayes classifier

results.phishing Array
An Array of Strings indicating phishing attempts detected on
the source

results.executables Array
An Array of Strings indicating executable attacks detected on
the source

results.arbitrary Array
An Array of Strings indicating arbitrary spam-detection
mechanisms detected on the source

links Array
An Array of Strings that include all of the parsed and
normalized links detected on the source . This is extremely
useful for URL reputation management.

tokens Array

Debug only: An Array of tokenized and stemmed words
(parsed from the source , with respect to determined locale)

used internally (for classification against the classifier) and
exposed for debugging. This property is only returned when
debug option in the instance is set to true .

mail Object

Debug only: A parsed mailparser.simpleParser object

used internally and exposed for debugging. This property is
only returned when debug option in the instance is set to
true .

scanner.getTokensAndMailFromSource(source)

Accepts a source argument (String, Buffer, or file path) to an email message (e.g. a .eml file). This

method will automatically call fs.readFile internally if the source argument is a String and determined to
be a valid path.

This method parses the source email message using mailparser's simpleParser function.

It then tokenizes and stems the message's subject, html, and text parts (with respect to the i18n determined
language of the message, e.g. en , es , jp , ru , etc). See the getTokens method documentation for

insight into how language is determined.

Currently Spam Scanner supports the following locales for tokenization, stemming, and stopword removal.
Note that we select specific tokenizers, stemmers, and stopwords based off the detected language in the
source .

Name Locale

Arabic ar

Danish da

https://nodemailer.com/extras/mailparser/

Name Locale

Dutch nl

English en

Finnish fn

Farsi fa

French fr

German de

Hungarian hr

Indonesian in

Italian it

Japanese ja

Norwegian nb , nn

Polish po

Portuguese pt

Spanish es

Swedish sv

Romanian ro

Russian ru

Tamil ta

Turkish tr

Vietnamese vi

Chinese zh

This method returns a Promise that resolves with a { tokens, mail } Object. You can also use this

method with a second callback argument.

Note that tokens is an Array of parsed tokenized and stemmed words, and mail is the simpleParser

parsed mail Object.

This is the core internal method used for building the Bag-of-words model which is then fed to the classifier
for categorization.

See classifier.js for an example implementation of this method (e.g. the one used in generating the default
classifier dataset).

https://en.wikipedia.org/wiki/Bag-of-words_model
https://github.com/spamscanner/spamscanner/blob/master/classifier.js

scanner.getClassification(tokens)

Accepts a tokens Array of tokens parsed from the tokens property returned in the Object from

scanner.getTokensAndMailFromSource (see above).

This method returns a Promise that resolves with the classification determined from naivebayes.

In order to defend against gibberish attack vectors, classification is limited to a limited bag of words
approach by. The default value is 20000 words per category. In other words the most 20000 common
spam words and 20000 common ham words are used to determine the classification of the original source.

We have plans to further refine the classifier to strip all gibberish by testing against Wikimedia (or Google AI)
datasets of word dictionaries of every language. This is not an easy feat to pull off, however we have
concrete plans for how we will approach this.

scanner.getPhishingResults(mail)

Accepts a mailparser.simpleParser parsed mail Object.

This method returns a Promise that resolves with an Array of messages (if any) that indicates that links
parsed from the message were detected to be phishing attempts. You can also use this method with a
second callback argument.

This method also prevents the common IDN homograph attacks. If any link is detected to start with the string
xn-- (e.g. after conversion from punycode.toASCII) then it is detected as phishing.

A common example of this is a link of рaypal.com which when converted to ASCII is xn--aypal-uye.com

– but when rendered it looks almost identical (if not identical) to paypal.com .

This method checks against Cloudflare for Families servers for both adult-related content, malware, and
phishing. This means we do two separate DNS over HTTPS requests to 1.1.1.2 for malware and

1.1.1.3 for adult-related content. You can parse the messages results Array for messages that contain
"adult-related content" if you need to parse whether or not you want to flag for adult-related content or not on
your application.

If you are using Cloudflare for Families DNS servers as mentioned in Requirements), then if there are any
HTTPS over DNS request errors, it will fallback to use the DNS servers set on the system for lookups, which
would in turn use Cloudflare for Family DNS. (using DNS over HTTPS with a fallback of dns.resolve4) – and
if it returns 0.0.0.0 then it is considered to be phishing.

We actually helped Cloudflare in August 2020 to update their documentation to note that this result of

0.0.0.0 is returned for maliciously found content on FQDN and IP lookups.

scanner.getExecutableResults(mail)

Accepts a mailparser.simpleParser parsed mail Object.

Note that this method detects (with respect to executables.json using "Content-Type" header detection, file
extension detection, and magic number detection.

https://github.com/ladjs/naivebayes
https://dumps.wikimedia.org/backup-index.html
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://en.wikipedia.org/wiki/IDN_homograph_attack
https://developers.cloudflare.com/1.1.1.1/1.1.1.1-for-families
https://nodejs.org/api/dns.html#dns_dns_resolve4_hostname_options_callback
https://github.com/spamscanner/spamscanner/blob/master/executables.json
https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files

This method returns a Promise that resolves with an Array of messages (if any) that indicate that links and/or
attachments parsed from the message were dangerous (e.g. contained executable files or links to
executable files). You can also use this method with a second callback argument.

This method also takes into consideration that the file extension and name could have a homograph attack
by using punycode.toASCII on the file name.

It also scans against links in the message itself for links to executables.

scanner.getTokens(str, locale, isHTML = false)

Accepts a str (String) and optional locale (String - valid i18n locale according to i18n-locales) and

isHTML parameters. If isHTML is set to true , then that indicates that the String passed as str is in
HTML format.

Returns an Array of SHA-256 hashed tokenized and stemmed words, with respect to the passed, detected,
or default locale. If config.debug is true , then the values are not returned as hashed values (e.g. this is

useful in testing and debugging).

Note that this is "smart" in the sense it will parse the "Content-Language" header of the message, the
content attribute of the HTML message's <meta http-equiv="Content-Language" content="en-us"> , or

the lang attribute of <html lang="en"> .

After parsing the language of the message, it will then use the package franc to attempt to determine the
language of the message (as long as the message has at least 5 characters, which is configurable).

Most importantly the following types of tokens are replaced with cryptographically generated random
hashes:

Emojis (this includes Github-flavored emoji written in Markdown and all Unicode emojis)

MAC addresses

Credit cards

Bitcoin addresses

Phone numbers

Hex colors

Initialisms

Abbreviations

Email addresses

Links

Integers and floating point values

Currencies

Note that the replacements for these types of tokens are whitelisted when stemming is performed.

Contractions are also expanded, e.g. "they're" becomes two tokens, "they" and "are", which are then
stemmed accordingly.

scanner.getArbitraryResults(mail)

https://en.wikipedia.org/wiki/IDN_homograph_attack
https://github.com/ladjs/i18n-locales
https://github.com/wooorm/franc

Accepts a mailparser.simpleParser parsed mail Object.

This method will test the message against arbitrary spam-detection reasons, such as GTUBE.

Returns an Array of messages (if any) that indicate that parts of the message were detected to be spam-
related for arbitrary reasons. You can also use this method with a second callback argument.

scanner.getVirusResults(mail)

Accepts a mailparser.simpleParser parsed mail Object.

This method returns a Promise that resolves with an Array of messages (if any) that indicate that
attachments parsed from the message were dangerous (e.g. contained trojans, viruses, malware, and/or
other malicious threats). You can also use this method with a second callback argument.

ClamAV is used internally with this method, in order to scan the attachments (in parallel).

scanner.parseLocale(locale)

Accepts a locale and returns it as a lowercase string with affixed localizations removed (e.g. en-US

becomes en and en_US becomes en as well).

Caching

By default a memoize config option is passed with an infinite limit for adult-content and malware lookups.

You can configure either the memoize or client options, with memoize being an Object of options to

pass to memoizee, and client being an instance of Redis, such as one created with @ladjs/redis.

Refer to the tests for examples of both implementations. If you go with the approach of memoize , then you
should set a size option such as:

Note that in Forward Email we use the client approach as we have multiple threads across multiple

servers running, and in-memory caching would not be efficient.

const scanner = new SpamScanner({
 // ...

 memoize: {

 // since memoizee doesn't support supplying mb or gb of cache size

 // we can calculate how much the maximum could potentially be
 // the max length of a domain name is 253 characters (bytes)

 // and if we want to store up to 1 GB in memory, that's

 // `Math.floor(bytes('1GB') / 253)` = 4244038 (domains)
 // note that this is per thread, so if you have 4 core server

 // you will have 4 threads, and therefore need 4 GB of free memory

 size: Math.floor(bytes('1GB') / 253)
 }

});

// ...

https://spamassassin.apache.org/gtube/
https://github.com/medikoo/memoizee
https://github.com/ladjs/redis
https://forwardemail.net/

Debugging

Spam Scanner has built-in debug output via util.debuglog('spamscanner') . You can also pass debug:

true to your instance to get more verbose output.

This means you can run your app with NODE_DEBUG=spamscanner node app.js to get useful debug output
to your console.

Contributors

Name Website

Nick Baugh http://niftylettuce.com/

Shaun Warman http://shaunwarman.com/

References

CC-CEDICT is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.

https://www.digitalocean.com/community/tutorials/how-to-setup-exim-spamassassin-clamd-and-
dovecot-on-an-arch-linux-vps

https://medium.com/@wingsuitist/set-up-clamav-for-osx-1-the-open-source-virus-scanner-
82a927b60fa3

http://redgreenrepeat.com/2019/08/09/setting-up-clamav-on-macos/

https://paulrbts.github.io/blog/software/2017/08/18/clamav/

https://gist.github.com/zhurui1008/4fdc875e557014c3a34e

License

Business Source License 1.1 © Niftylettuce, LLC.

Releases 52

v5.1.5 Latest

on Jun 13, 2022

http://niftylettuce.com/
http://shaunwarman.com/
https://cc-cedict.org/
https://www.digitalocean.com/community/tutorials/how-to-setup-exim-spamassassin-clamd-and-dovecot-on-an-arch-linux-vps
https://medium.com/@wingsuitist/set-up-clamav-for-osx-1-the-open-source-virus-scanner-82a927b60fa3
http://redgreenrepeat.com/2019/08/09/setting-up-clamav-on-macos/
https://paulrbts.github.io/blog/software/2017/08/18/clamav/
https://gist.github.com/zhurui1008/4fdc875e557014c3a34e
https://github.com/spamscanner/spamscanner/blob/master/LICENSE
https://niftylettuce.com/
https://github.com/spamscanner/spamscanner/releases
https://github.com/spamscanner/spamscanner/releases/tag/v5.1.5

+ 51 releases

Packages

No packages published

Used by 17

+ 9

Contributors 4

niftylettuce

titanism

marquicodes Kyriakos Markakis

dependabot[bot]

Languages

JavaScript 98.2% HTML 1.6% Shell 0.2%

https://github.com/spamscanner/spamscanner/releases
https://github.com/orgs/spamscanner/packages?repo_name=spamscanner
https://github.com/spamscanner/spamscanner/network/dependents
https://github.com/spamscanner/spamscanner/network/dependents
https://github.com/spamscanner/spamscanner/graphs/contributors
https://github.com/niftylettuce
https://github.com/niftylettuce
https://github.com/titanism
https://github.com/titanism
https://github.com/marquicodes
https://github.com/marquicodes
https://github.com/apps/dependabot
https://github.com/apps/dependabot
https://github.com/spamscanner/spamscanner/search?l=javascript
https://github.com/spamscanner/spamscanner/search?l=html
https://github.com/spamscanner/spamscanner/search?l=shell

