
Stepan Parunashvili Twitter Instant Books Fitness

A Graph-Based Firebase

In A Database in the Browser, I wrote that the schleps we face as UI
engineers are actually database problems in disguise [1]. This begged the
question: would a database-looking solution solve them?

A few months ago, my co-founder Joe and I decided to build one and �nd
out. This became Instant. I’d describe it as a graph-based successor to
Firebase.

You have relational queries and basic auth. Optimistic updates come out of
the box, and everything is reactive. It is an MVP you can play with today.

Working on Instant has felt like an evolutionary process. We picked
constraints and followed the path that unfolded. This led us to places we
would never have predicted. For example, we started with SQL but ended up
with a triple store and a query language that transpiles to Datalog.

What were these constraints? Why triple store? What query language? In
this essay, I’ll walk you through the design journey — from problems to
solve, to choices made, to what’s next.

I hope by the end, you’re as excited as I am about what this could mean for
building apps and the people who use them.

Delightful Apps
Our journey starts by looking at what exists today. Think about the most
delightful apps you’ve tried. What comes to mind? To me, it’s apps like Figma,
Linear, and Notion. And if you asked why, I’d say three reasons: Optimistic
Updates, Multiplayer, and O�ine-Mode.

https://stopa.io/
https://twitter.com/stopachka
https://instantdb.dev/
https://www.zeneca.io/stopa
https://www.consistent.fit/
https://stopa.io/post/296
https://stopa.io/post/279
https://instantdb.com/

Optimistic Updates

Once you’re in the �ow of Figma or Notion, you rarely see a loading screen.
This is because every change you make is applied instantly. It’s painful to do
this well. You need a method for applying changes on the client and server.
You need a queue to maintain order. You need undo. And the edge cases get
daunting: if you have multiple changes waiting and the �rst one fails, what
should happen? You need some way to cancel the dependents [2].

Challenging to build but transformative once done. Interaction time
changes how you use an application. Get fast enough, and your �ngertips
become your primary constraint. I think this is the key to unlocking �ow. [3]

Multiplayer

Speed itself is delightful, but it’s taken further with multiplayer. Every
feature in Linear is collaborative by default. Assigned a task? All active
sessions see your change. [4]

There’s a pattern to multiplayer too. Developers think it’s a nice-to-have.
But then some company builds it, and we’re stunned by the result. Figma did
this for Sketch, and Notion did this for Evernote.

But most apps aren’t multiplayer. This isn’t because we’ve hit a sweet spot of
text editors, task managers, and design tools. Multiplayer is just too hard to
build. [5]

O�ine-Mode

Finally, delightful apps work o�ine. Some not completely o�ine, but they all
handle spotty connections.

And o�ine-mode has the same pattern as multiplayer. It feels like a nice-to-
have, but build it and you leap past your competitors. Why? Two reasons:

First, though internet connectivity is abundant, there’s a tail end. The
subway, the airplane, the spotty cafe. Seems minor, but eliminating the tail-
end can be transformative. When we know that an app will work no matter
what, we use it di�erently. [6]

Second, your app becomes even faster. O�ine-mode amortizes read latency.
For example, the �rst time you load Linear, it may take time to fetch
everything. But then, subsequent loads feel instant; you’ll just see o�ine
data �rst. [7]

Applications from The Future
Combine these features, and you get an application available everywhere, as
fast as your �ngertips, and multiplayer by default.

Compared to the average web app, this is a di�erence in kind. Linear is so
fast that you fall into �ow states closing tasks. No one would say this about
Jira. Notion’s o�ine-mode lets you store every note there. People don’t do
this in Dropbox Paper. In Figma, two designers can collaborate on the same
�le. This was unheard of in the days of Sketch.

These applications let you work in new ways. They become tools that you
can master. And I think this is how most apps will be in the future. We
prefer the experience, and the Notions of the world teach us to expect it.

As an industry, we’ll need to �nd new abstractions that make building apps
like this easy. I think it’s worth the e�ort to �nd them now.

Bespoke Solutions
So let’s try to discover this abstraction. What works today? Linear and
Notion exist; how do they do it?

Thankfully there’s lots [8] of [9] interesting [10] work [11] that explains their
architecture. Here’s a simpli�ed view:

Let’s go bottom-up:

A. DB

On the backend we start with a database. Users want a live view of some
subset of data. We can keep live views by either polling the database or
leveraging a write-ahead log. [12]

B. Permissions

The DB gives us a set of results, but we can’t just send this data up to users.
We need to �lter for what they are allowed to see.

So we build a permission layer. This starts simple. But as an app gets
complex, permissions resemble their own language. Facebook had the best
design I’ve seen. Here’s how it looked:

function IDenyIfArchived(_user, task) {

 if (task.isArchived) {

 return deny();

 }

 return allow();

}

// ...

{

 "task": {

 read: [

 IAllowIfTeamUser,

],

 write: [

 IDenyIfArchived,

 IAllowIfTeamUser,

],

 }

}

Developers write a set of IAllow or IDeny rules per model. Since all reads
and writes go through this layer, engineers can be sure that their queries are
safe. [13]

C. Sockets

Now we reach the websocket layer. Clients subscribe to di�erent topics. For
Notion, it could be “documents and comments.” Or for Linear it could be
“team, task, and users.”

Backend developers hand-cra� live queries to satisfy these topics. There’s a
balancing act to play here. The more complicated the query, the harder it is
to keep a live view. [14] So we need to simplify queries as much as possible.
Most o�en, this means we skip pagination and overfetch. [15]

D. In-Memory Store

Now we move to the frontend. Sockets funnel all this data into an in-
memory store:

const Store = {

 teams: {

 teamIdA: {...}

 },

 users: {

 userIdA: {...}

 },

 tasks: {

 taskIdA: {..., teamId: "teamIdA", ownerId: ["userIdA"]

 }

}

We do this so all screens have consistent information. For example, if a user
changes their pro�le picture, we should see updates everywhere. The best
way to do that is to keep data normalized and in one place.

E. IndexedDB

But we need our app to work o�ine too. So we back our store with durable
storage. For web this is IndexedDB. When our app loads, we hydrate the
store with what was saved before. This is what enables o�ine-mode and
amortizes read latency.

F. Screens

Okay, time to paint screens. Right now we have a store with normalized
data. But normalized data isn’t directly useful for rendering. What a screen
wants is a graph. Say we show a “team tasks” page in Linear; we’d want
team info, all the tasks for the team, and the owner for the task:

We can build this with a javascript function:

function dataForTaskPage(store, teamId) {

 return {

 ...store.teams[teamId],

 tasks: store.tasksForTeam(teamId).map((task) => {

 return { ...task, owner: store.users[task.ownerId] };

 }),

 };

}

If this causes too many re-renders, we can memoize it or use some kind of
dirty-checking. With that, we have a page a user can interact with.

G. Mutations

Then users make changes. We want those changes to feel instant, so we
support optimistic updates. This is how it usually looks:

Whatever mutation we make, our local store and server need to understand
them. This way we can apply changes immediately.

To do this well, we need to support undo. We need to maintain order, and we
need to be able to cancel dependent mutations. Hard stu�, but Linear,
Figma, and Notion all go through the schlep.

Once this is done, we’ve got an application from the future on our hands.

What Exists
Oof. Lots of custom work. Could these apps have used an existing tool
instead?

Firebase

Firebase comes closest. It has optimistic updates out of the box. It supports
o�ine mode and is reactive by default. But, I think Firebase has two
dealbreakers: relations and permissions.

Relations

The biggest dealbreaker is Firebase’s query strength. You’re limited to
document lookups. When Firebase was built, this was a great tradeo� to
make. It’s simpler to support optimistic updates and o�ine mode for
document stores. But for sophisticated apps, you need relations.

Figma, Notion, and Linear all have relations. Notion has a recursive model
where blocks reference other blocks. Linear has users, tasks, and teams.
Figma has documents, objects and properties.

If you need relations, document stores explode in complexity. You end up
having to implement your own joins with hand-tuned caches. Another
schlep.

Permissions

The second dealbreaker is Firebase’s permission system. [16] Firebase
Realtime has a language that looks like a long boolean expression:

auth != null && (!data.exists() || data.child("users").hasChild(auth.id));

This gets unmaintainable fast [17]. It improved in Firestore — there’s now a
function-like abstraction:

function isAuthorOrAdmin(userId, article) {

 let isAuthor = article.author == userId;

 let isAdmin = exists(/databases/$(database)/documents/admins/$(userId));

 return isAuthor || isAdmin;

}

But again, this wasn’t built for complex use cases. There’s no way to write an
early return statement for example. If we’re aiming for Linear, Figma, or
Notion, we need a system that can scale to complex rules.

Supabase, Hasura

So Firebase won’t work. What about Supabase or Hasura?

They solve Firebase’s greatest dealbreaker: relations. Both Supabase and
Hasura support relations.

But they do this at the expense of a local abstraction. Neither support
o�ine-mode or optimistic updates. Multiplayer is still crude. You write basic
subscriptions and manage the client yourself.

Supabase and Hasura also don’t have a powerful permission system. They
use Postgres’s Row-Level Security. Permissions are written as policies. But
this won’t work for sophisticated apps. You’ll need to write so many policies,
that it’ll be impossible to reason about. It’ll get slow too — the planner will
struggle with them.

The Missing Column

So Firebase has a great local abstraction, but no support for relations.
Supabase and Hasura support relations, but have a poor local abstraction.
Put this in a table and you have an interesting column to think about:

What if a tool could support relations and a local abstraction? You could
write any query that a Figma, Linear, or Notion would need. And you could
handle all of the hard work they do locally: optimistic updates, multiplayer,
and o�ine-mode.

Add support for complex permissions, and you have a tool to build
applications from the future!

Inspiration
A daunting column to satisfy. But again, if we look at how Figma, Linear,
and Notion work, we �nd clues. Squint, and their architecture looks like a
database!

Again, screens need consistent data. Previously, we wrote functions and got
data from the store. Remember dataForTasksPage ?

function dataForTaskPage(store, teamId) {

 return {

 ...store.teams[teamId],

 tasks: store.tasksForTeam(teamId).map((task) => {

 return { ...task, owner: store.users[task.ownerId] };

 }),

 };

}

Well, this is just a query! If we had a local database — let’s call it Local DB
— that understood some GraphQL-looking language, we could instead
declare:

teams {

 ...

 tasks: {

 ...

 owner: {

 ...

 }

 }

}

And voila, we’d have data for our screens.

Next, we backed our data into IndexedDB. Well, databases are good at
caching. Our Local DB could back itself up in IndexedDB!

And the mutation system? If our Local DB and Backend DB spoke the same
language, both could understand and apply the same mutations. Local DB
can handle undo/redo, and with that we have optimistic updates out of the
box.

What about sockets? Databases handle replication. So what if we made the
client a special node? The Local DB already knows the queries to satisfy. So
it can talk to the backend and get the data it needs.

On the backend, what if we had the same kind of permission system that
Facebook had? We’d have a fully expressive language that could scale to
complex rules.

Make the Backend DB handle live queries, and we have all the pieces for our
missing column!

Local DB
Let’s dive into our Local DB �rst. This is what’s going to handle queries,
caching, and talking to our server. If we do this right, we inform everything
else.

Requirements

The minimum our Local DB needs is support for relations. Whatever we do,
we should be able to express “Give me team info, related tasks, and the
owner for each task”.

We should also support recursive queries. For Notion, we need to say “Give
me a block and expand all children recursively”.

Our Local DB should also be easy to use. Firebase is famous for this. You
can start working with a single index.html �le. API calls are consistent and
simple. You don’t need to specify a schema to get started. We should be just
as easy to use. [18]

And our Local DB should be light. At least on the client. Yes we can cache
the download. But I don’t think developers will take you up on an o�er that
doubles their bundle.

Finally, our Local DB should be simple. Every feature in our Local DB needs
to be supported by our multiplayer backend. This won’t ship if our spec is
too large.

Exploring SQL
A SQL-based tool is closest at hand. I enjoyed looking at absurd-sql. This
uses sql.js (SQLLite compiled to webassembly) and persists state into
IndexedDB.

SQL is battle tested and supports a wide array of features. But if you take
the constraints we set out, you’ll see it’s a bad bet.

Schema and Size

My investigation began with two light issues.

First, SQL has a schema. Schema is useful, but it make things less easy than
Firebase. You can hack immediately in Firebase, but there’s upfront work
with a schema. [19]

https://github.com/jlongster/absurd-sql

Second, there’s size. sql.js is about 400KBs gzipped. Yes this can be cached,
but I just don’t see most apps adopting a library that adds this overhead.

Both reservations have reasonable counters. We could infer a schema on our
user’s behalf, or write a lighter implementation of SQL. With problems like
this we could have moved forward.

Language

But SQL as a language turns out to be a dealbreaker. SQL isn’t simple or
easy. It’s a tough combination of lots of features, with little of it being useful
for the frontend.

Consider the most common query for UIs: Fetch nested relations.
Remember our dataForTaskPage ?

function dataForTaskPage(store, teamId) {

 return {

 ...store.teams[teamId],

 tasks: store.tasksForTeam(teamId).map((task) => {

 return { ...task, owner: store.users[task.ownerId] };

 }),

 };

}

This is one SQL query for it:

SELECT

 teams.*, tasks.*, owner.*

FROM teams

JOIN tasks ON tasks.team_id = teams.id

JOIN users as owner ON tasks.owner_id = owner.id

WHERE teams.id = ?

And it works. But it’s inconvenient. Our query will return an exploded list of
rows. Each row represents an owner, with tasks and teams duplicated. But
what we actually wanted was a nested structure. Something like:

{

 teams: [{id: 2, name: "Awesome Team", tasks: [{..., owner: {}}, ...]}, ...]

}

To make this work, we could use a GROUP BY with json_group_array and
json_object . Like this:

SELECT

 teams.*,

 json_group_array(

 json_object(

 'id', tasks.id,

 'title', tasks.title,

 'owner', json_object('id', owner.id, 'name', owner.name))

) as tasks

FROM teams

JOIN tasks ON tasks.team_id = teams.id

JOIN users as owner ON owner.id = tasks.owner_id

GROUP BY teams.id

WHERE teams.id = ?

Try it here.

But you can already see we’re going o� the beaten path. What if we had
subscribers for each task? We’d need at least two more joins. One more
GROUP BY . Likely we’d want a subquery. And if we wanted to support the

Notion case? We’d want a WITH RECURSIVE clause.

Now we’re in a tough spot. The frontend’s common case is SQL’s advanced
case. We shouldn’t need advanced features for common cases.

Plus, what about all the SQL features we’d rarely use in the frontend? The
spec for the core language is over 1700 pages long [20]. We’d have to
implement reactivity for all 1700 pages. I don’t think the schlep is worth it.

Another Approach

https://sqlime.org/#gist:3e02f01fdc8a0d131a5a07ac7b4a6d70

SQL is out. Let’s start with a di�erent question then: How do we make
frontend queries easy?

The most common query is our “fetch nested relations”. For Linear it’s
“team, with related tasks and their owners”. Or for Notion, we want “blocks,
with child blocks expanded”. Or for Figma, “documents with their
comments, layers, and properties”.

See a pattern here? They’re all graphs:

And this pointed us to a question: would a graph database make frontend
queries easy?

Triple Stores
So we wrote a graph database to �nd out. We chose Triple Stores, one of the
simplest kinds of graph databases. If you haven’t tried one, here’s a quick
intuition:

Imagine we’re trying to express a graph with data structures. What do we
need?

Well, we need to be able to express a node with attributes. To say:

User with id 1 has name "Joe"

Team with id 2 has name "Awesome Team"

Task with id 3 has title "Code"

These sentences translate to lists:

[1, "name", "Joe"]

[2, "name", "Awesome Team"]

[3, "title", "Code"]

Then we want a way to describe references. To say:

Task with id 3 has an "owner" reference to User with id 1

Team with id 2 has a "task" reference to Task with id 3

Well...these translate to lists just as well:

[3, "owner", 1]

[2, "tasks", 3]

Put these lists in a table, and you have a triple store! Triple is the name of
the list we’ve been writing:

[1, "name", "Joe"]

The �rst item is always an id , the second the attribute , and the third, the
value . Turns out triples are all we need to express a graph. Here’s a more

�eshed out example:

And once you’ve expressed a graph, you can traverse it. Triple stores have
interesting query languages. Here’s Datalog:

(pull db '[* {:team/task [* {:task/owner [*]}]}] team-id)

With this we’ve replaced dataForTasksPage !

Exploring Triple Stores
Triple stores felt like our rubicon moment. An entire architecture unravelled
from our choice.

Schema and Size

My investigation kicked o� with two happy surprises.

First, I always assumed that if we wanted relations, we would need a
schema. But it turns out triple stores don’t need one. [21] I think a schema is
helpful. But to compete with Firebase, it’s a win that we can make this
optional.

Then there’s size. Triple stores are notoriously light. Datascript is one of the
most battle-tested triple stores. It’s transpiled from Clojurescript and carries
the extra weight of Clojure. But even then, the bundle size is about 90KB.

Simple

But the killer feature is how simple triple stores are. You can write a
roughly complete implementation in less than a hundred lines of
Javascript [22].

The query planner uses 3 main indexes [23]. Datalog — the query language I
mentioned — is so simple that there isn’t a spec [24]. The mutation system
boils down two primitives [25].

Even with the 100 LOC version, you can express a query like “Give me all
the owners for the tasks where this person is a subscriber” [26]

80/20 for Multiplayer

Turns out triple stores are a great answer for muliplayer too. Once we make
our Local DB collaborative, we’ll need to support con�icts. What should
happen when two people change something at the same time?

Notion, Figma, and Linear all use last-write-wins. This means that
whichever change reaches the server last wins.

This can work well, but we need to be creative about it. Imagine if two of us
changed the same Figma Layer. One of us changed the font size, and the
other changed the background color. If we’re creative about how we save
things, there shouldn’t be a con�ict in the �rst place.

How does Figma this? They store their properties in a special way. They
store them as...triples! [27]

[1, "fontSize", 20]

[1, "backgroundColor", "blue"]

These triples say that the Layer with id 1 has a fontSize 20 and
backgroundColor blue. Since they are di�erent rows, there’s no con�ict.

And voila, we have the same kind of con�ict-resolution as Figma. [28]

But Speed and Scale?

At this point, you may wonder: this is great and all, but what about speed
and scale?

Well, the core technology is old [29]. Datalog and triple stores have been
around for decades. This also means that people have built reactive
implementations [30].

But what makes me most optimistic about the answer here, is that Facebook
runs on a graph database. Tao is facebook’s in-house data store. If you look
at Tao, it’s not so di�erent from a triple store! [31]

Easy?

This is getting exciting. But what about ease of use? This is how the “Give
me all the owners for the tasks where this person is a subscriber” query
looks in Datalog:

{:find ?owner,

 :where [[?task :task/owner ?owner]

 [?task :task/subscriber sub-id]}

Datalog as a language is elegant and simple. But it’s not easy the same way
Firebase is. You need to learn a logic-based language. Then you get back
triples. But in the UI you want typed objects.

This would be a deal-breaker. But here’s where Datalog’s strength comes in.
It’s so small that we can just keep it as our base layer, and write a
friendlier language on top.

InstaQL

That’s how InstaQL was born. If you look at what’s intuitive for the UI, I
think GraphQL syntax comes closest:

teams {

 ...

 tasks: {

 ...

 owner: {

 ...

 }

 }

}

You just declare what you want; the shape of the query looks like the result.

InstaQL was heavily inspired by GraphQL. It’s a similar-looking language
and produces Datalog. Here’s how queries look:

{

 teams: {

 $: {where: {id: 1}},

 tasks: {owner: {}},

 },

}

You can see the �rst departure from GraphQL: InstaQL is written with plain
javascript objects. This lets us avoid a build step; a�er all Firebase doesn’t
need one. And there’s another win: if the language itself is written with
objects and arrays, engineers can write functions that manipulate them.

The second departure is in the mutation system. In GraphQL you de�ne
mutations as functions in the backend. This is a problem because then you
can’t do optimistic updates out of the box. Without talking to the server,
there’s no way to know what a mutation does.

In InstaQL, mutations look like this:

transact([

 tx.tasks[taskId]

 .update({title: "New Task"})

 .link({owner: ownerId}}

])

These mutations produce triple store assertions and retractions. So our
Local DB can apply them, and we have optimistic updates out of the box
again. [32]

Instant Today
So we wrote a triple store, and Instant was born. Here’s roughly how it
looks:

We have a client-side implementation of InstaQL. You can write queries
like:

{

 teams: {

 $: {where: {id: 1}},

 tasks: {owner: {}}

 },

}

And get back objects:

{

 teams: [{

 id: 1,

 name: 'Awesome Team',

 tasks: [{id: 3, title: 'Code', owner: [{id: 1, name: 'Joe'}]

 }]

}

These are live queries that talk to the Local DB — a triple store. The Local
DB then handles optimistic updates and syncs with the backend server,
sockets and all [33].

When our early users wrote their �rst relational query, I saw delight in their
eyes. And boy was that thrilling.

Instant Tomorrow
Right now we support email-only auth. But we don’t have permission system
yet. Either data is anonymous and can be written by everyone, or users are
logged in and can only read and write their own data.

This is limiting, but it’s in a state where you can play. Coming soon, we’re
going to build an FB-like permission system. This way you can write
expressive permissions like this:

function IDenyIfArchived(_user, task) {

 if (task.isArchived) {

 return deny();

 }

 return allow();

}

// ...

{

 "task": {

 read: [

 IAllowIfTeamUser,

],

 write: [

 IDenyIfArchived,

 IAllowIfTeamUser,

],

 }

}

Once we have permissions, we’ll be able to make sync more sophisticated.
Right now Instant fetches the world. Shortly, Instant will fetch just the
queries you need. This will start out simple, but will evolve towards
incremental view maintenance.

It was obvious to me that the browser has been missing a database. With
Instant, I see that a graph database is one of the best bets we have to make
delightful apps easy to build.

If you’re excited about this stu�, sign up and give us a try. Joe and I will
reach out to your personally for feedback.

Thanks Joe Averbukh, Alex Reichert, Mark Shlick, Slava Akhmechet, Nicole Garcia
Fischer, Daniel Woelfel, Jake Teton-Landis, Rudi Chen, Dan Vingo, Dennis Heiho�
for reviewing dra�s of this essay.

Thoughts? Reach out to me via twitter or email :)

https://instantdb.com/
https://twitter.com/stopachka

