
dcmoura / spyql Public

Query data on the command line with SQL-like SELECTs powered by Python expressions

spyql.readthedocs.io

 MIT license

 877 stars 25 forks

View code

SPyQL
SQL with Python in the middle

pypipypi v0.9.0v0.9.0 docsdocs passingpassing codecovcodecov 96%96% downloadsdownloads 14k14k code stylecode style blackblack LicenseLicense MITMIT

About

SPyQL is a query language that combines:

the simplicity and structure of SQL;

with the power and readability of Python.

 Star Notifications

Code Issues 25 Pull requests Actions Security Insights

 master

dcmoura Bump version: 0.8.1 → 0.9.0 … on Dec 4, 2022 239

SELECT
 date.fromtimestamp(.purchase_ts) AS purchase_date,

 .price * .quantity AS total

FROM json

WHERE .department.upper() == 'IT'
ORDER BY 2 DESC

TO csv

README.rst

https://github.com/dcmoura
https://github.com/dcmoura/spyql
https://spyql.readthedocs.io/
https://github.com/dcmoura/spyql/blob/master/LICENSE
https://github.com/dcmoura/spyql/stargazers
https://github.com/dcmoura/spyql/forks
https://pypi.org/project/spyql/
https://spyql.readthedocs.io/en/latest/
https://codecov.io/gh/dcmoura/spyql
https://pepy.tech/project/spyql
https://github.com/psf/black
https://opensource.org/licenses/MIT
https://github.com/login?return_to=%2Fdcmoura%2Fspyql
https://github.com/login?return_to=%2Fdcmoura%2Fspyql
https://github.com/dcmoura/spyql
https://github.com/dcmoura/spyql/issues
https://github.com/dcmoura/spyql/pulls
https://github.com/dcmoura/spyql/actions
https://github.com/dcmoura/spyql/security
https://github.com/dcmoura/spyql/pulse
https://github.com/dcmoura/spyql/commits?author=dcmoura
https://github.com/dcmoura/spyql/commit/958ede5f5bc17a749c11c5871bbc097997b1f600
https://github.com/dcmoura/spyql/commit/958ede5f5bc17a749c11c5871bbc097997b1f600
https://github.com/dcmoura/spyql/commits/master
https://github.com/dcmoura

SQL provides the structure of the query, while Python is used to define expressions, bringing along a
vast ecosystem of packages.

SPyQL is fast and memory efficient. Take a look at the benchmarks with GB-size JSON data.

SPyQL CLI

SPyQL offers a command-line interface that allows running SPyQL queries on top of text data (e.g.
CSV, JSON). Data can come from files but also from data streams, such as as Kafka, or from
databases such as PostgreSQL. Basically, data can come from any command that outputs text :-).
More, data can be generated by a Python expression! And since SPyQL also writes to different
formats, it allows to easily convert between data formats.

Take a look at the Command line examples to see how to query parquet, process API calls,
transverse directories of zipped JSONs, convert CSV to JSON, and import JSON/CSV data into SQL
databases, among many other things.

See also:

Tutorial (v0.8)

Demo video (v0.4)

SPyQL Module

SPyQL is also available as a Python module. In addition to the CLI features, you can also:

query variables (e.g. lists of dicts);

get results into in-memory data structures.

Principles

We aim for SPyQL to be:

Simple: simple to use with a straightforward implementation;

Familiar: you should feel at home if you are acquainted with SQL and Python;

Light: small memory footprint that allows you to process large data that fit into your machine;

Useful: it should make your life easier, filling a gap in the eco-system.

Distinctive features of SPyQL

Row order guarantee

Natural window for aggregations

No distinction between aggregate and window functions

IMPORT clause

Natural support for lists, sets, dictionaries, objects, etc

https://colab.research.google.com/github/dcmoura/spyql/blob/master/notebooks/json_benchmark.ipynb
https://danielcmoura.com/blog/2022/spyql-cell-towers/
https://vimeo.com/danielcmoura/spyqldemo

1-liner by design

Multiple data formats supported

Testimonials

"I'm very impressed - this is some very neat pragmatic software design."

Simon Willison, Creator of Datasette, co-creator of Django

"I love this tool! I use it every day"...

Alin Panaitiu, Creator of Lunar

"Brilliant tool, thanks a lot for creating it and for the example here!"

Greg Sadetsky, Co-founder and CTO at Decibel Ads

Documentation

The official documentation of SPyQL can be found at: https://spyql.readthedocs.io/.

Installation

The easiest way to install SPyQL is from pip:

Hello world

To test your installation run in the terminal:

Output:

Message

Hello world

pip install spyql

spyql "SELECT 'Hello world' as Message TO pretty"

https://spyql.readthedocs.io/

You can try replacing the output format by JSON or CSV, and adding more columns. e.g. run in the
terminal:

Output:

Example queries

You can run the following example queries in the terminal: spyql "the_query" < a_data_file

Example data files are not provided on most cases.

Query a CSV (and print a pretty table)

Convert CSV to a flat JSON

Convert from CSV to a hierarchical JSON

or

JSON to CSV, filtering out NULLs

spyql "SELECT 'Hello world' as message, 1+2 as three TO json"

{"message": "Hello world", "three": 3}

SELECT a_col_name, 'positive' if int(col2) >= 0 else 'negative' AS sign

FROM csv
TO pretty

SELECT * FROM csv TO json

SELECT {'client': {'id': col1, 'name': col2}, 'price': 120.40} AS json

FROM csv TO json

SELECT {'id': col1, 'name': col2} AS client, 120.40 AS price

FROM csv TO json

SELECT .client.id AS id, .client.name AS name, .price
FROM json

Explode JSON to CSV

Sample input:

Output:

id, name, price
1028, tomatoes, 1.5

1028, bananas, 2.0

1029, peaches, 3.12

Python iterator/list/comprehension to JSON

or

Importing python modules

Here we import hashlib to calculate a md5 hash for each input line. Before running this example
you need to install the hashlib package (pip install hashlib).

WHERE .client.name is not NULL

TO csv

SELECT .invoice_num AS id, .items.name AS name, .items.price AS price

FROM json

EXPLODE .items

TO csv

{"invoice_num" : 1028, "items": [{"name": "tomatoes", "price": 1.5}, {"name": "bananas

{"invoice_num" : 1029, "items": [{"name": "peaches", "price": 3.12}]}

SELECT 10 * cos(col1 * ((pi * 4) / 90))

FROM range(80)

TO json

SELECT col1
FROM [10 * cos(i * ((pi * 4) / 90)) for i in range(80)]

TO json

IMPORT hashlib as hl

SELECT hl.md5(col1.encode('utf-8')).hexdigest()

FROM text

Getting the top 5 records

Aggregations

Totals by player, alphabetically ordered.

Partial aggregations

Calculating the cumulative sum of a variable using the PARTIALS modifier. Also demoing the lag
aggregator.

Sample input:

Output:

SELECT int(score) AS score, player_name

FROM csv
ORDER BY 1 DESC NULLS LAST, score_date

LIMIT 5

SELECT .player_name, sum_agg(.score) AS total_score

FROM json
GROUP BY 1

ORDER BY 1

SELECT PARTIALS

 .new_entries,
 sum_agg(.new_entries) AS cum_new_entries,

 lag(.new_entries) AS prev_entries

FROM json

TO json

{"new_entries" : 10}

{"new_entries" : 5}

{"new_entries" : 25}
{"new_entries" : null}

{}

{"new_entries" : 100}

{"new_entries" : 10, "cum_new_entries" : 10, "prev_entries": null}

{"new_entries" : 5, "cum_new_entries" : 15, "prev_entries": 10}

{"new_entries" : 25, "cum_new_entries" : 40, "prev_entries": 5}

{"new_entries" : null, "cum_new_entries" : 40, "prev_entries": 25}

If PARTIALS was omitted the result would be equivalent to the last output row.

Distinct rows

Command line examples

To run the following examples, type Ctrl-x Ctrl-e on you terminal. This will open your default

editor (emacs/vim). Paste the code of one of the examples, save and exit.

Queries on Parquet with directories

Here, find transverses a directory and executes parquet-tools for each parquet file, dumping
each file to json format. jq -c makes sure that the output has 1 json per line before handing over

to spyql. This is far from being an efficient way to query parquet files, but it might be a handy option if
you need to do a quick inspection.

Querying multiple json.gz files

Querying YAML / XML / TOML files

yq converts yaml, xml and toml files to json, allowing to easily query any of these with spyql.

{"new_entries" : null, "cum_new_entries" : 40, "prev_entries": null}

{"new_entries" : 100, "cum_new_entries" : 140, "prev_entries": null}

SELECT DISTINCT *

FROM csv

find /the/directory -name "*.parquet" -exec parquet-tools cat --json {} \; |
jq -c |

spyql "

 SELECT .a_field, .a_num_field * 2 + 1
 FROM json

"

gzcat *.json.gz |
jq -c |

spyql "

 SELECT .a_field, .a_num_field * 2 + 1

 FROM json
"

https://kislyuk.github.io/yq/#

Kafka to PostegreSQL pipeline

Read data from a kafka topic and write to postgres table name customer .

Monitoring statistics in Kafka

Read data from a kafka topic, continuously calculating statistics.

Sub-queries (piping)

A special file format (spy) is used to efficiently pipe data between queries.

cat file.yaml | yq -c | spyql "SELECT .a_field FROM json"

cat file.xml | xq -c | spyql "SELECT .a_field FROM json"

cat file.toml | tomlq -c | spyql "SELECT .a_field FROM json"

kafkacat -b the.broker.com -t the.topic |
spyql -Otable=customer -Ochunk_size=1 --unbuffered "

 SELECT

 .customer.id AS id,
 .customer.name AS name

 FROM json

 TO sql
" |

psql -U an_user_name -h a.host.com a_database_name

kafkacat -b the.broker.com -t the.topic |

spyql --unbuffered "
 SELECT PARTIALS

 count_agg(*) AS running_count,

 sum_agg(value) AS running_sum,
 min_agg(value) AS min_so_far,

 value AS current_value

 FROM json
 TO csv

"

cat a_file.json |

spyql "
 SELECT ' '.join([.first_name, .middle_name, .last_name]) AS full_name

 FROM json

(Equi) Joins

It is possible to make simple (LEFT) JOIN operations based on dictionary lookups.

Given numbers.json:

Query:

Output:

If you want a INNER JOIN instead of a LEFT JOIN, you can add a criteria to the where clause, e.g.:

Output:

Queries over APIs

 TO spy" |

spyql "SELECT full_name, full_name.upper() FROM spy"

{

 "1": "One",

 "2": "Two",

 "3": "Three"
}

spyql -Jnums=numbers.json "

 SELECT nums[col1] as res
 FROM [3,4,1,1]

 TO json"

{"res": "Three"}
{"res": null}

{"res": "One"}

{"res": "One"}

SELECT nums[col1] as res
FROM [3,4,1,1]

WHERE col1 in nums

TO json

{"res": "Three"}

{"res": "One"}

{"res": "One"}

Plotting to the terminal

Plotting with matplotcli

curl https://reqres.in/api/users?page=2 |

spyql "
 SELECT

 .data.email AS email,

 'Dear {}, thank you for being a great customer!'.format(.data.first_name) AS m

 FROM json
 EXPLODE .data

 TO json

"

spyql "

 SELECT col1

 FROM [10 * cos(i * ((pi * 4) / 90)) for i in range(80)]
 TO plot

"

spyql "

 SELECT col1 AS y
 FROM [10 * cos(i * ((pi * 4) / 90)) for i in range(80)]

 TO json

" | plt "plot(y)"

https://github.com/dcmoura/matplotcli

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project

template.

Releases 5

v0.9.0 Latest

on Dec 4, 2022

+ 4 releases

Used by 4

@wzulfikar / langchain-playground

@aadehamid / Data-Engineering-Projects

Contributors 8

https://github.com/dcmoura/spyql/blob/master/imgs/matplotcli_demo1.png
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/dcmoura/spyql/releases
https://github.com/dcmoura/spyql/releases/tag/v0.9.0
https://github.com/dcmoura/spyql/releases
https://github.com/dcmoura/spyql/network/dependents
https://github.com/wzulfikar/langchain-playground
https://github.com/aadehamid/Data-Engineering-Projects
https://github.com/dcmoura/spyql/graphs/contributors

Languages

Jupyter Notebook 87.3% Python 12.5% Makefile 0.2%

https://github.com/dcmoura
https://github.com/recharte
https://github.com/Hayashi-Yudai
https://github.com/benji-york
https://github.com/areski
https://github.com/pyup-bot
https://github.com/yashbonde
https://github.com/apps/dependabot
https://github.com/dcmoura/spyql/search?l=jupyter-notebook
https://github.com/dcmoura/spyql/search?l=python
https://github.com/dcmoura/spyql/search?l=makefile

