
cloudquery / pg_gpt Public

Experimental extension that brings OpenAI API to your PostgreSQL to run queries in human language.

 Apache-2.0 license

 408 stars 15 forks

View code

Postgres <> ChatGPT
Experimental PostgreSQL extension that enables the use of OpenAI GPT API inside PostgreSQL,
allowing for queries to be written using natural language.

Demo

 Postgres.ChatGPT.mp4

(This demo uses data from the Hacker News and Azure CloudQuery plugins)

 Star Notifications

Code Issues 1 Pull requests Actions Projects Security Insights

 main

 14

0:00

README.md

https://github.com/cloudquery
https://github.com/cloudquery/pg_gpt
https://github.com/cloudquery/pg_gpt/blob/main/LICENSE
https://github.com/cloudquery/pg_gpt/stargazers
https://github.com/cloudquery/pg_gpt/forks
https://www.cloudquery.io/integrations/hackernews/postgresql
https://www.cloudquery.io/integrations/azure/postgresql
https://github.com/login?return_to=%2Fcloudquery%2Fpg_gpt
https://github.com/login?return_to=%2Fcloudquery%2Fpg_gpt
https://github.com/cloudquery/pg_gpt
https://github.com/cloudquery/pg_gpt/issues
https://github.com/cloudquery/pg_gpt/pulls
https://github.com/cloudquery/pg_gpt/actions
https://github.com/cloudquery/pg_gpt/projects
https://github.com/cloudquery/pg_gpt/security
https://github.com/cloudquery/pg_gpt/pulse
https://github.com/cloudquery/pg_gpt/commits/main

How does it work?

The extension sends a subset of the database schema to ChatGPT and asks it to generate a query
based on this and the user input.

Before you start

Note: This plugins sends schema (without the data) to OpenAI GPT API, so it is not
recommended to use it on production databases.

Note: This is an experimental plugin and not officially supported by CloudQuery.

Installation

Requires pgx. Install this first:

Now you can install the extension:

Available Functions

gpt(text) - Generates a query based on the user input and the full database schema. This

works fine for databases with small schemas.

gpt_tables(table_pattern, text) - Similar to gpt, but only uses the tables that match the
pattern. The pattern is passed to a table_name LIKE query, so % can be used as wildcard.

cargo install --locked cargo-pgx
cargo pgx init

git clone https://github.com/cloudquery/pg_gpt

cd pg_gpt
export OPENAI_KEY=<YOUR_KEY>

cargo pgx run

will drop into psql shell

create extension pg_gpt;

set openai.key = '<YOUR OPENAPI API KEY HERE>'; -- set your key

select gpt('show me all open aws s3 buckets');

-- will output the following query, so you can execute it
-- select * from aws_s3_bucket;

https://github.com/tcdi/pgx

Installing the extension on an existing Postgres instance

First run:

This places the extension in the postgres extensions directory. Then, in your postgres instance, run:

Limitations

Schema Size - Currently we use gpt-3.5-turbo, which is limited to 4096 tokens. Use gpt_tables

to narrow down the set of tables.

Releases

No releases published

Packages

No packages published

Contributors 2

hermanschaaf Herman Schaaf

yevgenypats Yevgeny Pats

Languages

Rust 100.0%

cargo pgx install

create extension pg_gpt;

set openai.key = '<YOUR OPENAPI API KEY HERE>';
-- proceed to use the extension

https://github.com/cloudquery/pg_gpt/releases
https://github.com/orgs/cloudquery/packages?repo_name=pg_gpt
https://github.com/cloudquery/pg_gpt/graphs/contributors
https://github.com/hermanschaaf
https://github.com/hermanschaaf
https://github.com/yevgenypats
https://github.com/yevgenypats
https://github.com/cloudquery/pg_gpt/search?l=rust

