
Elliott Slaughter

What Are the Enduring
Innovations of Lisp?
Saturday, December 31, 2022 Programming

Historically, Lisp was a behemoth in the world of language

design innovation. The list of Lisp’s innovations is so long

that I’d have to list most of the features associated with

modern languages. (Do you like if statements? You can

thank Lisp!)

But the language landscape has changed a lot since then,

and realistically no programmer today cares about what

made a language stand out 50 years ago. Clearly, the good

ideas have been copied into other languages. Paul Graham

even suggests this convergence towards Lisp is inevitable. I

wouldn’t go so far. But this begs the question: Is there

anything left? Are there any features that couldn’t be copied

so easily into the various descendants of Algol?

I’d say these features, particularly in combination, continue

to be distinctive:

1. An “everything is available all the time” approach to

system design. Lisp allows you to run code at compile

time, compile code at runtime, run and compile code

while debugging, iteratively compile and profile

different sets of code, etc. Everything blurs together so

that there are no obvious boundaries between different

parts of the system. The way that common Lisp systems

produce executable binaries to be used as application

deliverables is by literally dumping the contents of

memory into a file with a little header to start things

back up again.

https://elliottslaughter.com/
https://elliottslaughter.com/labels/programming
http://www.paulgraham.com/icad.html


2. Pervasive interactivity, i.e. the REPL. This was more of

a contrast to e.g. Fortran and other ahead-of-time

compiled languages, but is still notable today. For

example, the Common Lisp package manager is

executed via the Lisp shell. Nearly all comparable

alternatives I’m aware of are executed out of process

via the system shell (/bin/bash, or what have you). Same

with the debugger, profiler, IDE (if that’s your thing),

even in some cases the OS.

3. A canonical representation of programs in terms of the

literal syntax of the language’s core data structures,

permitting a design where the program text is the literal

representation of the program AST.

Let me unpack that.

Python has literal syntax for various core language data

structures: [] for lists, {} for dictionaries, () for tuples,

etc. Python programs are not represented in terms of

those literals; the language itself has different syntax

(def, class, etc.). But Lisp programs are.

Lisp programs are expressed using Lisp’s list core data

structure. Therefore, the text of a program in Lisp

consists simply of the serialization of this data structure

into text via the literal syntax for lists (i.e. the infamous

()). Furthermore, this permits an implementation

where the language AST (at least through to the first

stage of the compiler) also uses the same representation.

This is what people mean when they say the language is

homeoiconic.

Homeoiconicity has a surprising advantage. Now it is

possible to manipulate, using only core language data

structures, program ASTs. It is possible, in other words,

to write code that produces code. And since the

compiler is available at all times, you can not just build

https://www.quicklisp.org/
https://en.wikipedia.org/wiki/Genera_(operating_system)


ASTs, but actually compile and run them. This is the

basis of metaprogramming in Lisp.

It’s worth noting that macros are not on my list above.

Macros are simply syntax sugar around the capability you

already have as a consequence of (1) and (3). Macros allow

you to hide the fact that you’re doing code generation, but

they don’t fundamentally give you any new capabilities

when the compiler was already available at runtime

anyway.

It’s also worth noting that code generation (and therefore

metaprogramming itself) are also not fundamentally

innovations of Lisp. For example, in C++, it is entirely

possible to link your application to libclang and build Clang

ASTs inside your application C++ code, and use the Clang

compiler to emit and run that code. Before you laugh,

know that people can and have done it. But unsurprisingly,

it’s hard—hard enough that you wouldn’t bother unless you

had a problem you couldn’t solve any other way, and so big

that you couldn’t ignore it.

Lisp is easier. In fact, Lisp is so much easier that people do it

in the course of their day-to-day programming tasks. This

is the real secret sauce of macros. Macros, together with the

key innovations above, make it possible to do

metaprogramming easily enough that it’s actually a regular

occurrence.

In case you missed it, I did a minor sleight of hand two

paragraphs back: I used the word “metaprogramming”, but

the links I included were all to domain-specific languages

(DSLs). This was not a mistake. As metaprograms become

more sophisticated, they become increasingly difficult to

distinguish from full-on languages. Furthermore, in a

language that makes metaprogramming easy, an

application that consists of a series of layered libraries

begins to look increasingly like a series of layered languages.

To put it another way, libraries and languages are both

https://github.com/lanl/Byfl
http://legion.stanford.edu/pdfs/singe2014.pdf


abstraction layers, but languages are the more powerful

one. This is, by the way, not a new idea, but it is one that the

broader software community has yet to internalize.

As someone who makes a living by creating languages and

compilers, it’s easy to downplay the significance that all of

this has on writing code. Even in the programming

languages community, Lisp probably gets less credit than it

deserves. But with the recent resurgence of DSLs, we

should really be taking a hard look at what Lisp provides. If

the goal is to make it easier to build DSLs, Lisp already

provides a lot of the starting blocks.

(I originally wrote this on February 27, 2017, but it remains as true

today as it was at the time. I’m finally getting around to publishing

it.)

Copyright © 2022 Elliott Slaughter.

http://www.paulgraham.com/progbot.html
https://www.tensorflow.org/versions/master/experimental/xla/
http://halide-lang.org/
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://stanford-ppl.github.io/Delite/

