
ignore.pl

You Can Serve Static Data Over HTTP
Published on 2022-01-27 20:00:00+01:00

This will be short. I need to let some steam off and flush this thing out of my mind because it's
already hanging around for too long. The story goes like this: we're prototyping small tool for
whatever and we're at the point where there is a visible need to store some (most likely) static
data. Oh, the thing is in JavaScript by the way.

"Yeah, let's just put it into a JSON file and serve it over web server."

Said me naively but turns out that there is a legitimate confusion on the other side of the trench.

"Do you mean a database?"

Let's end the flashback here, we already have enough background for what will follow. Now, hear
me out, your API endpoint is just pretending to be a file.

You don't need a full blown web application back-end. You don't need an over-featured database
engine that can provide its own REST API endpoints with data. And you don't need a complex
ORM library and couple your data model to it and write your own endpoints. You don't need any
of these and possibly others.

You may need them, but never let your habits decide your designs.

It's not illegal to use static files and it does work. Moreover, with a limited set of data it gives huge
freedom to developer to try out things and break them. It's suited for rapid prototyping but it also
has its own place in production environment (e.g., git).

Is it possible to learn this power?

Not from a modern developer. You need to jump down the rabbit hole of the history of solid and
proven solutions.

First off, create some files. In my example we needed some static data for JavaScript, so we
used JSON:

[

{"type": 1, "name": "a"},

https://ignore.pl/

{"type": 1, "name": "b"}

]

Now, save it as a file called things without any extension at all. Something like this will do:

$ pwd

/home/ignore/public

$ ls

things

It's ready to be served to the client. Start up your favourite server that can handle static data and
position it at the directory that you've selected:

$ python3 -m http.server

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

It can now be accessed at http://localhost:8000/things. If you are working with JS as I did
that time, shift the public content a bit to also serve the client application:

$ ls . api

.:

index.html style.css main.js api/

api:

things

Dead simple, right? Now you know. Hey, you can even mock more complex APIs with a help of
symlinks and creativity. And if you worry about whether it works - just try it out. If it has some
problems - force the server to set correct mime type for files without extensions.

Hopefully, next post will be more interesting, but this had to be done. Just had to. I may rest now.

