
Hardening Drupal with WebAssembly
By Jesús González

At 2023 / 05

10 mins reading

Intro
Drupal is one of the most popular Content Management Systems (CMS), powering well-

known websites such as the European Union, NASA or Tesla. Like any other complex

software, vulnerabilities are discovered in Drupal or in the underlying PHP components

over time, and in many cases, the necessary updates are not promptly implemented. In

traditional stacks, where components have direct access to the underlaying operating

system, certain vulnerabilities could be exploited to compromise the system.

This article explores how Drupal can benefit from the capabilities-based security model

offered by WebAssembly, a portable binary format that allows execution of code in a

safe and efficient manner. By deploying Drupal within a WebAssembly-based stack, it

gains an additional security layer, protecting against a wide range of vulnerabilities,

including those that may not be public yet but can be preemptively mitigated through

these mechanisms.

In addition, we provide a practical implementation of deploying Drupal in Apache with

mod_wasm, showcasing the seamless integration of the WebAssembly build of PHP.

This novel stack not only improves Drupal's security measures, but also unlocks the

ability for integration with other WebAssembly-powered components.

Wasm Labs

Articles Events Projects About @vmwwasm

https://www.drupal.org/
https://european-union.europa.eu/index_en
https://www.nasa.gov/
http://www.tesla.com/
https://webassembly.org/
https://github.com/vmware-labs/mod_wasm
https://github.com/vmware-labs/webassembly-language-runtimes/releases?q=php
https://wasmlabs.dev/
https://wasmlabs.dev/articles
https://wasmlabs.dev/events
https://wasmlabs.dev/projects
https://wasmlabs.dev/about
https://twitter.com/vmwwasm

TL;DR:

Try out Drupal running into a WebAssembly environment:

docker run -p 8080:8080 ghcr.io/vmware-labs/httpd-mod-wasm:latest

Go to http://localhost:8080/drupal

Understanding WebAssembly

and mod_wasm
WebAssembly (Wasm for short) is an open, portable and efficient binary instruction

format, supported by many programming languages. It follows a secure-by-design

approach, implementing a deny-by-default security model that requires explicit

authorization for accessing external resources like the file system. This inherent security

makes WebAssembly an excellent choice for running untrusted code while ensuring the

integrity of the main application and the underlying system.

All major browsers already provide built-in WebAssembly support. Additionally, it can be

run on the server-side using a dedicated runtime. This versatility means WebAssembly

can execute near-native performance code in a secure environment on both the web

and the server. It also provides the ability to seamlessly interoperate binary modules

written in different programming languages.

At Wasm Labs, we aim to enable the execution of traditional applications within a

WebAssembly environment with little to no modifications. The goal is to bring the

benefits of Wasm to as many developers as possible without a steep learning curve. This

led us to develop mod_wasm, an Apache server extension that allows Wasm binaries to

handle HTTP requests. This extension facilitates such a handling in virtually any

programming language with WebAssembly support.

http://localhost:8080/drupal
https://webassembly.org/
https://www.fermyon.com/wasm-languages/webassembly-language-support
https://wasmlabs.dev/
https://github.com/vmware-labs/mod_wasm

With mod_wasm, the stack to run PHP applications like Drupal closely resembles a

traditional stack with a few modifications. The Apache HTTP server and the Drupal

packages remain unchanged. However, instead of loading the libphp.so extension

module, it incorporates mod_wasm.so . In addition, instead of relying on the traditional

PHP interpreter, it utilizes a PHP build in the WebAssembly binary format. For this

purpose, we can utilize the binary provided by the WebAssembly Languages Runtime

project. This pre-built binary bundles all the necessary PHP requirements for Drupal,

including PDO, DOM, GD, and more. As of the time of writing, the latest PHP Wasm

build available is 8.2.0.

Running Drupal in Apache with

mod_wasm
The quickest way to try by yourself the full WebAssembly-based stack (Apache +

mod_wasm + PHP Wasm + Drupal) is checking out the Docker container we prepared

for demo purposes. It includes Drupal in different flavors among other examples.

https://github.com/vmware-labs/webassembly-language-runtimes
https://github.com/vmware-labs/webassembly-language-runtimes/releases?q=php
https://www.drupal.org/docs/getting-started/system-requirements/php-requirements
https://github.com/vmware-labs/webassembly-language-runtimes/releases/download/php%2F8.2.0%2B20230418-d75a618/php-cgi-8.2.0.wasm
https://github.com/vmware-labs/mod_wasm/pkgs/container/httpd-mod-wasm
https://github.com/vmware-labs/mod_wasm/tree/main/examples

Pre-initialized Drupal 10 instance

This provided instance of Drupal 10 is pre-configured and pre-initialized with some initial

content. This pre-initialized state allows for a quick demonstration of the fully functional

Wasm stack and showcases how all Drupal's PHP dependencies are met and fully

operational.

As usual, you can easily install new Drupal extensions and themes via composer ,

provided their required version dependencies are met.

To access the administrator account, simply log in with the credentials "admin/admin".

URL: http://localhost:8080/drupal

Drupal 10 from Scratch

http://localhost:8080/drupal

This particular instance of Drupal is uninitialized, providing users with the opportunity to

explore and test the Drupal setup process within the WebAssembly stack.

During the setup process, Drupal may issue warnings regarding disabled OPcode

caching and limited date range. We will address these limitations later on, but for now,

you can safely ignore them.

URL: http://localhost:8080/drupal-10-zero

Custom Setup

To try the WebAssembly stack on your own setup, you will first need to download the

mod_wasm extension and drop it into your Apache's modules directory.

If you are running Apache on Linux, you can get the latest release directly from

GitHub.

For Windows users, mod_wasm can be downloaded from Apache Lounge.

Alternatively, you have the option to compile it yourself by following the provided

build instructions.

http://localhost:8080/drupal-10-zero
https://github.com/vmware-labs/mod_wasm/releases
https://www.apachelounge.com/download/
https://github.com/vmware-labs/mod_wasm#%EF%B8%8F-building-mod_wasm

Setting up Apache for mod_wasm and Drupal is a straightforward process. Simply

update your Apache's httpd.conf configuration file by loading the mod_wasm.so

extension module, specifying the path to the PHP Wasm binary, and configuring specific

directives for PHP and Drupal.

LoadModule wasm_module modules/mod_wasm.so

<Location /drupal>

 AddHandler wasm-handler .php

 WasmModule /path/to/wasm/php-cgi-8.2.0.wasm

 WasmDir /var/www/drupal

 WasmMapDir /tmp /var/www/drupal/tmp

 WasmEnv TMPDIR /tmp

 WasmEnableCGI On

</Location>

Enhanced Security Through

Sandboxing
As we mentioned earlier, WebAssembly follows a deny-by-default strategy, limiting

access to different system resources unless explicitly authorized. In the previous

configuration example, directives like WasmDir or WasmMapDir exemplify this approach.

By authorizing access only to /var/www/drupal/ and mapping a virtual /tmp directory

to /var/www/drupal/tmp , the PHP Wasm interpreter is restricted from accessing other

directories. This setup applies specifically to .php resources within the /drupal

location. A different configuration could be applied to different directories, providing a

secure environment for multi-tenant deployments.

These additional protections provide an extra layer of security without relying solely on

operating system-level permissions. They grant developers and sysadmins improved

control over access permissions, reducing the attack surface and ensuring better

isolation between unrelated modules.

https://github.com/vmware-labs/mod_wasm#new-directives

WebAssembly has proven effective in mitigating various vulnerabilities, including those

not yet public. Dive deeper into this topic with our article "Mitigating PHP Vulnerabilities

with WebAssembly" and discover the benefits of WebAssembly for enhancing PHP

security.

Considerations and Limitations
Before deploying Drupal into a Wasm-based stack, it's important to be aware of certain

limitations.

The primary limitation is the current lack of socket support in mod_wasm, which

prevents PHP Wasm from accessing the network and using client-server databases like

MySQL and PostgreSQL. All different instances in the demo container were configured

to use SQLite which is embedded in the PHP Wasm build. This may be good enough for

certain web sites, but it is not suitable for many others.

There are ongoing efforts to make socket support mainstream in WebAssembly. The

standardization process is making good progress, including functional demos. Some

runtimes, such as WasmEdge, already offer socket support. In fact, we succesfully

connected a WordPress instance to a MySQL database using this specific runtime.

The absence of sockets also means that PHP in Wasm cannot perform outgoing HTTP

requests for downloading Drupal extensions or checking for updates.

In addition, the current WebAssembly version 1.0 only supports 32-bit memory

addresses. Consequently, PHP Wasm can only handle 32-bit integers. Fortunately, the

WebAssembly 2.0 draft includes a 64-bit memory space, addressing this limitation. Also,

PHP's Opcode caching feature is disabled in PHP Wasm. Drupal promptly detects these

limitations during the installation process.

https://wasmlabs.dev/articles/mitigating-php-vulnerabilities-with-webassembly/
https://github.com/WebAssembly/wasi-sockets
https://youtu.be/nOkzmOapiSY?t=2113
https://github.com/second-state/wasmedge_wasi_socket
https://wasmlabs.dev/articles/wordpress-nginx-fcgi-mysql/
https://www.drupal.org/docs/system-requirements/limitations-of-32-bit-php
https://webassembly.github.io/spec/core/index.html
https://github.com/WebAssembly/memory64/blob/main/proposals/memory64/Overview.md
https://www.php.net/manual/en/book.opcache.php

Conclusions and Future Work
We explored deploying Drupal within a WebAssembly-based stack. By adopting a

capabilities-based security model and integrating Drupal with mod_wasm, you can

mitigate certain vulnerabilities. The integration of WebAssembly with the Apache server

enables the execution of PHP code in a secure environment.

Moving forward, we will work on introducing socket support in mod_wasm to enable

network access to traditional databases and outgoing HTTP requests, further expanding

the capabilities of Drupal deployments.

Embracing WebAssembly opens doors to a more secure Drupal ecosystem. Try out our

Drupal demos or directly download mod_wasm for your own setup. And feel free to

share your comments with us on Twitter and GitHub. If you liked this project, give us a

⭐!

ABOUT THE AUTHORS

https://github.com/vmware-labs/mod_wasm/tree/main/examples
https://github.com/vmware-labs/mod_wasm/releases
https://twitter.com/vmwwasm
https://github.com/vmware-labs/mod_wasm
https://github.com/vmware-labs/mod_wasm/stargazers

Jesús González

Staff 2 Engineer at OCTO

SHARE IT

Twitter LinkedIn Facebook

Do you want to stay up to date with
WebAssembly and our projects?

Follow us on Twitter

© 2023 VMware, Inc

Terms of Use

Your California Rights

Privacy

Accessibility

Trademarks

This Website does not use Cookies or any personally identifiable user data.

https://twitter.com/intent/tweet?via=vmwwasm&url=https%3A%2F%2Fwasmlabs.dev%2Farticles%2Fhardening-drupal-with-webassembly%2F&text=Explore%20how%20Drupal%20can%20benefit%20from%20the%20capabilities-based%20security%20model%20offered%20by%20WebAssembly.&hashtags=WebAssembly,Wasm
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fwasmlabs.dev%2Farticles%2Fhardening-drupal-with-webassembly%2F
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwasmlabs.dev%2Farticles%2Fhardening-drupal-with-webassembly%2F
https://twitter.com/intent/user?screen_name=vmwwasm
https://vmware.com/
https://www.vmware.com/help/legal.html
https://www.vmware.com/help/privacy/california-privacy-rights.html
https://www.vmware.com/help/privacy.html
https://www.vmware.com/help/accessibility.html
https://www.vmware.com/help/trademarks.html
https://twitter.com/intent/user?screen_name=vmwwasm
https://github.com/vmware-labs
https://github.com/vmware-labs

