
Workgroup:
Published:

Intended Status:
Expires:
Authors:

HTTP
26 May 2023
Standards Track
27 November 2023
J. Reschke
greenbytes

 A. Malhotra J.M. Snell

The HTTP QUERY Method
Abstract
This speci�cation de�nes a new HTTP method, QUERY, as a safe,
idempotent request method that can carry request content.

Editorial Note
This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the HTTP working group mailing list (ietf-
http-wg@w3.org), which is archived at
https://lists.w3.org/Archives/Public/ietf-http-wg/.

Working Group information can be found at https://httpwg.org/; source code
and issues list for this draft can be found at https://github.com/httpwg/http-
extensions/labels/safe-method-w-body.

The changes in this draft are summarized in Appendix A.3.

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP
78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF). Note that other groups may also distribute working documents as
Internet-Drafts. The list of current Internet-Drafts is at
https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may
be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them other
than as "work in progress."

This Internet-Draft will expire on 27 November 2023.

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/safe-method-w-body
https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identi�ed as the document
authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions
Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on
the date of publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect to this
document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Revised BSD
License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. QUERY

2.1. Caching

3. The "Accept-Query" Header Field

4. Examples

4.1. Simple QUERY with a Direct Response

4.2. Simple QUERY with indirect response (303 See Other)

5. Security Considerations

6. IANA Considerations

7. Normative References

Appendix A. Change Log

A.1. Since draft-ietf-httpbis-safe-method-w-body-00

A.2. Since draft-ietf-httpbis-safe-method-w-body-01

A.3. Since draft-ietf-httpbis-safe-method-w-body-02

Authors' Addresses

1. Introduction
This speci�cation de�nes the HTTP QUERY request method as a means of
making a safe, idempotent request that contains content.

Most often, this is desirable when the data conveyed in a request is too
voluminous to be encoded into the request's URI. For example, while this is an
common and interoperable query:

GET /feed?q=foo&limit=10&sort=-published HTTP/1.1
Host: example.org

if the query parameters extend to several kilobytes or more of data it may not be,
because many implementations place limits on their size. Often these limits are
not known or discoverable ahead of time, because a request can pass through
many uncoordinated systems. Additionally, expressing some data in the target
URI is inef�cient, because it needs to be encoded to be a valid URI.

Encoding query parameters directly into the request URI also effectively casts
every possible combination of query inputs as distinct resources. Depending on
the application, that may not be desirable.

As an alternative to using GET, many implementations make use of the HTTP
POST method to perform queries, as illustrated in the example below. In this
case, the input parameters to the search operation are passed along within the
request content as opposed to using the request URI.

A typical use of HTTP POST for requesting a search

POST /feed HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded

q=foo&limit=10&sort=-published

This variation, however, suffers from the same basic limitation as GET in that it is
not readily apparent -- absent speci�c knowledge of the resource and server to
which the request is being sent -- that a safe, idempotent query is being
performed.

The QUERY method provides a solution that spans the gap between the use of
GET and POST. As with POST, the input to the query operation is passed along
within the content of the request rather than as part of the request URI. Unlike
POST, however, the method is explicitly safe and idempotent, allowing functions
like caching and automatic retries to operate.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in BCP 14
[RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown
here.

2. QUERY
The QUERY method is used to initiate a server-side query. Unlike the HTTP GET
method, which requests that a server return a representation of the resource
identi�ed by the target URI (as de�ned by Section 7.1 of [HTTP]), the QUERY
method is used to ask the server to perform a query operation (described by the
request content) over some set of data scoped to the effective request URI. The
content returned in response to a QUERY cannot be assumed to be a
representation of the resource identi�ed by the effective request URI.

The content of the request de�nes the query. Implementations MAY use a
request content of any media type with the QUERY method, provided that it has
appropriate query semantics.

https://rfc-editor.org/rfc/rfc9110#section-7.1

QUERY requests are both safe and idempotent with regards to the resource
identi�ed by the request URI. That is, QUERY requests do not alter the state of
the targeted resource. However, while processing a QUERY request, a server
can be expected to allocate computing and memory resources or even create
additional HTTP resources through which the response can be retrieved.

A successful response to a QUERY request is expected to provide some
indication as to the �nal disposition of the operation. For instance, a successful
query that yields no results can be represented by a 204 No Content response. If
the response includes content, it is expected to describe the results of the
operation. In some cases, the server may choose to respond indirectly to the
QUERY request by returning a 3xx Redirection with a Location header �eld
specifying an alternate Request URI from which the results can be retrieved
using an HTTP GET request. Various non-normative examples of successful
QUERY responses are illustrated in Section 4.

The semantics of the QUERY method change to a "conditional QUERY" if the
request message includes an If-Modi�ed-Since, If-Unmodi�ed- Since, If-
Match, If-None-Match, or If-Range header �eld ([HTTP], Section 13). A
conditional QUERY requests that the query be performed only under the
circumstances described by the conditional header �eld(s). It is important to
note, however, that such conditions are evaluated against the state of the target
resource itself as opposed to the collected results of the search operation.

2.1. Caching
The response to a QUERY method is cacheable; a cache MAY use it to satisfy
subsequent QUERY requests as per Section 4 of [HTTP-CACHING]).

The cache key for a query (see Section 2 of [HTTP-CACHING]) MUST
incorporate the request content. When doing so, caches SHOULD �rst
normalize request content to remove semantically insigni�cant differences,
thereby improving cache ef�ciency, by:

Removing content encoding(s)
Normalizing based upon knowledge of format conventions, as indicated by
the any media type suf�x in the request's Content-Type �eld (e.g., "+json")
Normalizing based upon knowledge of the semantics of the content itself, as
indicated by the request's Content-Type �eld.

Note that any such normalization is performed solely for the purpose of
generating a cache key; it does not change the request itself.

https://rfc-editor.org/rfc/rfc9110#section-13
https://rfc-editor.org/rfc/rfc9111#section-4
https://rfc-editor.org/rfc/rfc9111#section-2

3. The "Accept-Query" Header Field
The "Accept-Query" response header �eld MAY be used by a server to directly
signal support for the QUERY method while identifying the speci�c query
format media type(s) that may be used.

Accept-Query = 1#media-type

The Accept-Query header �eld speci�es a comma-separated listing of media
types (with optional parameters) as de�ned by Section 8.3.1 of [HTTP].

The order of types listed by the Accept-Query header �eld is not signi�cant.

4. Examples
The non-normative examples in this section make use of a simple, hypothetical
plain-text based query syntax based on SQL with results returned as comma-
separated values. This is done for illustration purposes only. Implementations
are free to use any format they wish on both the request and response.

4.1. Simple QUERY with a Direct Response
A simple query with a direct response:

QUERY /contacts HTTP/1.1
Host: example.org
Content-Type: example/query
Accept: text/csv

select surname, givenname, email limit 10

Response:

HTTP/1.1 200 OK
Content-Type: text/csv

surname, givenname, email
Smith, John, john.smith@example.org
Jones, Sally, sally.jones@example.com
Dubois, Camille, camille.dubois@example.net

4.2. Simple QUERY with indirect response (303 See Other)
A simple query with an Indirect Response (303 See Other):

QUERY /contacts HTTP/1.1
Host: example.org
Content-Type: example/query
Accept: text/csv

select surname, givenname, email limit 10

Response:

https://rfc-editor.org/rfc/rfc9110#section-8.3.1

[RFC2119]

[RFC8174]

[HTTP]

[HTTP-CACHING]

HTTP/1.1 303 See Other
Location: http://example.org/contacts/query123

Fetch Query Response:

GET /contacts/query123 HTTP/1.1
Host: example.org

Response:

HTTP/1.1 200 OK
Content-Type: text/csv

surname, givenname, email
Smith, John, john.smith@example.org
Jones, Sally, sally.jones@example.com
Dubois, Camille, camille.dubois@example.net

5. Security Considerations
The QUERY method is subject to the same general security considerations as all
HTTP methods as described in [HTTP].

6. IANA Considerations
IANA is requested to add QUERY method in the permanent registry at
<http://www.iana.org/assignments/http-methods> (see Section 16.1.1 of
[HTTP]).

Method Name Safe Idempotent Speci�cation

QUERY Yes Yes Section 2

Table 1

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP
Semantics", STD 97, RFC 9110, June 2022, <https://www.rfc-
editor.org/rfc/rfc9110>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed.,
"HTTP Caching", STD 98, RFC 9111, June 2022, <https://www.rfc-

https://rfc-editor.org/rfc/rfc9110#section-16.1.1
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9111

editor.org/rfc/rfc9111>.

Appendix A. Change Log
This section is to be removed before publishing as an RFC.

A.1. Since draft-ietf-httpbis-safe-method-w-body-00
Use "example/query" media type instead of unde�ned "text/query"
(https://github.com/httpwg/http-extensions/issues/1450)
In Section 3, adjust the grammar to just de�ne the �eld value
(https://github.com/httpwg/http-extensions/issues/1470)
Update to latest HTTP core spec, and adjust terminology accordingly
(https://github.com/httpwg/http-extensions/issues/1473)
Reference RFC 8174 and markup bcp14 terms
(https://github.com/httpwg/http-extensions/issues/1497)
Update HTTP reference (https://github.com/httpwg/http-
extensions/issues/1524)
Relax restriction of generic XML media type in request content
(https://github.com/httpwg/http-extensions/issues/1535)

A.2. Since draft-ietf-httpbis-safe-method-w-body-01
Add minimal description of cacheability (https://github.com/httpwg/http-
extensions/issues/1552)
Use "QUERY" as method name (https://github.com/httpwg/http-
extensions/issues/1614)
Update HTTP reference (https://github.com/httpwg/http-
extensions/issues/1669)

A.3. Since draft-ietf-httpbis-safe-method-w-body-02
In Section 3, slightly rephrase statement about signi�cance of ordering
(https://github.com/httpwg/http-extensions/issues/1896)
Throughout: use "content" instead of "payload" or "body"
(https://github.com/httpwg/http-extensions/issues/1915)
Updated references (https://github.com/httpwg/http-
extensions/issues/2157)

Authors' Addresses

https://www.rfc-editor.org/rfc/rfc9111
https://github.com/httpwg/http-extensions/issues/1450
https://github.com/httpwg/http-extensions/issues/1470
https://github.com/httpwg/http-extensions/issues/1473
https://github.com/httpwg/http-extensions/issues/1497
https://github.com/httpwg/http-extensions/issues/1524
https://github.com/httpwg/http-extensions/issues/1535
https://github.com/httpwg/http-extensions/issues/1552
https://github.com/httpwg/http-extensions/issues/1614
https://github.com/httpwg/http-extensions/issues/1669
https://github.com/httpwg/http-extensions/issues/1896
https://github.com/httpwg/http-extensions/issues/1915
https://github.com/httpwg/http-extensions/issues/2157

Julian Reschke
greenbytes GmbH
Hafenweg 16
48155 Münster
Germany
Email: julian.reschke@greenbytes.de
URI:
https://greenbytes.de/tech/webdav/

Ashok Malhotra
Email: malhotrasahib@gmail.com

James M Snell
Email: jasnell@gmail.com

mailto:julian.reschke@greenbytes.de
https://greenbytes.de/tech/webdav/
mailto:malhotrasahib@gmail.com
mailto:jasnell@gmail.com

