
Why does "👩🏾‍🌾" have a
length of 7 in JavaScript?

by Evan Hahn, posted May 27, 2023

In short: 👩🏾‍🌾 is made of 1 grapheme cluster, 4 scalars,

and 7 UTF-16 code units. That’s why its length is 7.

The length property is used to determine the length of

a JavaScript string. Sometimes, its results are intuitive:

"E".length;

// => 1

"♬".length;

// => 1

…sometimes, its results are surprising:

"🌸".length;

// => 2

"👩🏾‍🌾".length;

// => 7

To understand why this happens, you need to

understand a few terms from the Unicode glossary.

https://evanhahn.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://www.unicode.org/glossary/

The first term is the extended grapheme cluster. This

is probably what most people would call a character. E,

♬, 🌸, and 👩🏾‍🌾 are examples of extended grapheme

clusters.

Extended grapheme clusters are made up of scalars.

Scalars are integers between 0 and 1114111, though

many of these numbers are currently unused.

Many extended grapheme clusters contain just one

scalar. For example, 🌸 is made up of the scalar

127800 and E is made up of scalar 69. 👩🏾‍🌾, however, is

made up of four scalars: 128105, 127998, 8205, and

127806.

(Scalars are usually written in hex with a “U+” prefix. For

example, the scalar for ♬ is 9836, which might be written

as “U+266C”.)

Internally, JavaScript stores these scalars as UTF-16

code units. Each code unit is a 16-bit unsigned integer,

which can store anything between 0 and 65,535. Many

scalars fit into a single code unit. Scalars that are too

big get split apart into two 16-bit numbers. These are

called surrogate pairs, which is a term you might see.

https://www.unicode.org/glossary/#extended_grapheme_cluster
https://www.unicode.org/glossary/#unicode_scalar_value
https://www.unicode.org/glossary/#code_unit
https://www.unicode.org/glossary/#surrogate_pair

For example, ♬ is made up of the scalar 9836. That fits

into a single 16-bit integer, so we just store 9836.

The scalar for 🌸 is 127800. That’s too big for a 16-bit

integer so we have to break it up. It gets split up into

55356 and 57144. (I won’t discuss how this splitting

works, but it’s not too complicated—the bits are divided

in the middle and a different number is added to each

half.)

That’s why "🌸".length === 2—JavaScript is

interrogating the number of UTF-16 code units, which is

2 in this case.

👩🏾‍🌾 is made up of four scalars. One of those scalars fits

in a single UTF-16 code unit, but the remaining three

are too big and get split up. That makes for a total of 7

code units. That’s why "👩🏾‍🌾".length === 7.

To summarize our examples:

Extended

grapheme

cluster Scalar(s) UTF-16 code units

E 69 69

Extended

grapheme

cluster Scalar(s) UTF-16 code units

♬ 9836 9836

🌸 127800 55356, 57144

👩🏾‍🌾 128105, 127998,

8205, 127806

55357, 56425, 55356,

57342, 8205, 55356,

57150

Most JavaScript string operations also work with UTF-

16.

slice(), for example, works with UTF-16 code units

too. That’s why you might get strange results if you slice

in the middle of a surrogate pair:

"The best character is X".slice(-1);

// => "X"

"The best character is 🌸".slice(-1);

// => "\udf38"

However, not all JavaScript string operations use UTF-

16 code units. For example, iterating over a string works

a little differently:

// The spread operator uses an iterator:

[..."👩🏾‍🌾"];

// => ["👩","🏾","","🌾"]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/@@iterator

// Same for `for ... of`:

for (const c of "👩🏾‍🌾") {

 console.log(c);

}

// => "👩"

// => "🏾"

// => ""

// => "🌾"

As you can see, this iterates over scalars, not UTF-16

code units.

Intl.Segmenter(), an object that doesn’t work in all

browsers, can help you iterate over extended grapheme

clusters if that’s what you need:

const str = "farmer: 👩🏾‍🌾";

// Warning: this is not supported on all browsers!

const segments = new Intl.Segmenter().segment(str);

[...segments];

// => [

// { segment: "f", index: 0, input: "farmer: 👩🏾‍🌾" },

// { segment: "a", index: 1, input: "farmer: 👩🏾‍🌾" },

// { segment: "r", index: 2, input: "farmer: 👩🏾‍🌾" },

// { segment: "m", index: 3, input: "farmer: 👩🏾‍🌾" },

// { segment: "e", index: 4, input: "farmer: 👩🏾‍🌾" },

// { segment: "r", index: 5, input: "farmer: 👩🏾‍🌾" },

// { segment: ":", index: 6, input: "farmer: 👩🏾‍🌾" },

// { segment: " ", index: 7, input: "farmer: 👩🏾‍🌾" },

// { segment: "👩🏾‍🌾", index: 8, input: "farmer: 👩🏾‍🌾" }

//]

For more on this tricky stuff, check out “It’s Not Wrong

that "🤦🏼‍♂️".length == 7” and “JavaScript has a

Unicode problem”.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/Segmenter
https://hsivonen.fi/string-length/
https://mathiasbynens.be/notes/javascript-unicode

About me Contact Projects Guides Blog

Content is licensed under the Creative Commons Attribution-NonCommercial
License and code under the Unlicense. The logo was created by Lulu Tang.

https://evanhahn.com/
https://evanhahn.com/about/
https://evanhahn.com/contact/
https://evanhahn.com/projects/
https://evanhahn.com/guides/
https://evanhahn.com/blog/
https://creativecommons.org/licenses/by-nc/4.0/
https://unlicense.org/
http://luluspice.com/

