
UpsideDownTrees

Loop much?

fp function currying closure javascript typescript

So you have multiple operations that you want to perform on a
list, you’re a good lad (or lass) and you’re not using a giant for

https://blog.mhashim6.me/
https://blog.mhashim6.me/tags/fp
https://blog.mhashim6.me/tags/function-currying
https://blog.mhashim6.me/tags/closure
https://blog.mhashim6.me/tags/javascript
https://blog.mhashim6.me/tags/typescript

loop; you’re feeling clever today and you’ll be using functional
operators like map, filter, and reduce.

But the list is relatively big, and even though it looks elegant,
iterating on it 10 times is not exactly up for a performance award.

[1, 2, 3, ���, 100000]
 .map(it �� it * 2)
 .filter(it �� it % 3 �� 0)
 .moreOps(���)
 .filter(���)
 .moreOps(���)
 .filter(���)
 .reduce((acc, it) �� acc + it);

No, I’m not here to talk about the order of operators

It’s important, but it’s not always applicable. Instead, I want to
discuss transducers, not the energy transformation devices, but
the concept itself.

You want to have your cake and eat it too—use the operators but
with a single iteration. It’s quite an old problem, and so is its
solution. Today we’ll focus on just filter.

Closures, not the ones you know

Let's take a look at filter

We can create an object that keeps track of each predicate used
on an array, and this is actually a perfect solution for
implementing the same concept in other operators.

Without changing filter implementation or introducing a new
filter function, we can use a simpler approach for the sake of
this post, and it’s a very powerful concept in many other
applications as well: Closures.

You might know that a closure is basically capturing the
enclosing environment in the body of an inner environment/
function. But this is not the closure we are talking about here;
Being able to manipulate/combine functions to produce another
function with the same characteristics is also called a closure ¯\
(�)/¯

“An operation for combining data objects satisfies the
closure property if the results of combining things with that
operation can themselves be combined using the same
operation.

—Structure & Interpretation of Computer Programs

Allow me to elaborate, what’s a predicate?

type Predicate<T> = (item: T) �� boolean;

A simple boolean value of true can be transformed to another
boolean value of false by different types of manipulation. Can
we do the same to a function like a predicate?

let us look at different ways to manipulate a boolean:

false �� false; �� false
false �� false; �� false
false �� true; �� false
false �� true; �� true
!false �� true

And much more. Can we apply and, or, not to our predicates?
Why of course we can! Why do you think I’m writing this? We just
need to make the right representation of the effect of these
operators:

const and =
 <T>(predicate1: Predicate<T>) ��
 (predicate2: Predicate<T>) ��
 (item: T) ��
 predicate1(item) �� predicate2(item);

const or =
 <T>(predicate1: Predicate<T>) ��
 (predicate2: Predicate<T>) ��
 (item: T) ��
 predicate1(item) �� predicate2(item);

const not =
 <T>(predicate: Predicate<T>) ��
 (item: T) ��

 !predicate(item);

It’s utilising the same primitive boolean operations, and at the
same time combines the predicates. Well, it combines their
results. Which is what we care about.

Most importantly, calls to and, or, not also return a predicate! This
allows to endlessly combine results of our combinations! This is
the power of (the other) closures!

Why are we returning a function that accepts the other
predicate instead of taking it as another parameter? Glad you
asked!

Why did we do this again?

Because now that you can combine predicates together, you can
have the same elegance of separating your �lters while making a
single call to filter:

const even = (n) �� n % 2 ��0;

const productOfThree = (n) �� n % 3 �� 0;

const evenAndProductOfThree = and(even)(productOfThree);

[3, 6, 9, 12]

https://blog.mhashim6.me/fp-and-oop-are-close-siblings/

 .filter(evenAndProductOfThree); �� [6, 12]

Or on the �y, since evenAndProductOfThree is also a predicate,
we can reuse it

[3, 6, 9, 12]
 .filter(not(evenAndProductOfThree)); �� [3, 9]

You can combine and accumulate as much predicates as you
want, it’ll all be run in a single iteration. But it also allows you to
maintain the elegance of separating your predicates and
combining them as building blocks to build the most suitable
�lter you need for your data.

What did you mention transducers for?

Well, it’s true this is not exactly a transducer, rather an
introduction to the other meaning of closures so that in the
next post, transducers will be our focus in sha’ Allah.

Share This Post

tech guide

https://blog.mhashim6.me/categories/tech
https://blog.mhashim6.me/categories/guide

Comments

Be the �rst to add a comment

LOG IN TO COMMENT

© 2023 The Upside-Down Trees

