
Hands-Free Coding
How I develop software using dictation and eye-tracking

Earlier this year, I developed Cubital Tunnel Syndrome, a repetitive-

strain injury, in both of my elbows. As a result, I pretty much can't

use a mouse or keyboard; after a few minutes, I get a burning pain

shooting down my arms. Even if I try to limit my computer usage to

60-second bursts, I wind up inadvertently making the situation

worse.

As you might imagine, this was a pretty big deal; as a software

developer, my entire career is based on being able to use a keyboard!

After many failed attempts at solving the problem with

physiotherapy, ergonomics, braces, diet and supplements,

prescription medications, supplements, mindbody soul-searching, and

a bunch of other stuff, I've found a solution that allows me to be

productive without risking further nerve damage. I now work almost

exclusively using a microphone and an eye-tracker.

In this article, I'll show you what that workflow looks like, and how

I've optimized it to fit my needs!

Update, December 9th: I am thrilled to report that my injury has gotten

much better! I'm back to using a keyboard and mouse as my primary

Josh Comeau

https://www.joshwcomeau.com/

input mechanism. It's a relief, but I also feel confident that I would

have managed just fine either way.

To give you a quick sense of what this looks like, here's a short video

of me writing a React component:

We'll get into how this all works, don't worry if it doesn't make a ton

of sense yet! I mostly wanted to showcase this upfront to show how

feasible this process can be.

Dictation software has been around for a long time, but it's usually

used purely to transcribe speech, often in the legal and medical

industries. Writing code is a different beast, since there's a lot of

syntax and conventions and non-dictionary words.

Fortunately, specialized software exists! I currently use Talon Voice, a

tool built specifically to help software developers work without using

A quick demo

Writing code with Talon

https://talonvoice.com/

their hands.

Talon has a free public version, but the exciting stuff happens in the

paid private beta. You can gain access by supporting the creator on

Patreon.

Let's dive into how this software works.

The first thing you learn as a new Talon user is how to dictate

individual letters.

Generally, you won't be dictating one letter at a time, but it comes in

handy now and then, like specifying CSS units (px, rem, etc).

English is an annoying language when it comes to phonetics. So

many of our letters sound the same. There's a reason telephone

operators say things like "M like Mary", "T as in Thomas".

The United Nations solved this problem with the NATO phonetic

alphabet—you know, the Whiskey-Tango-Foxtrot thing. But these

words tend to be multi-syllable, and nobody has time for that jazz. So

Talon includes its own phonetic mappings of (mostly) single-syllable

words:

 - air

 - bat

 - cap

 - drum

When I say “drum” into the microphone, the letter is written as if I

had pressed that key on the keyboard.

Alphabet

a

b

c

d

d

https://www.patreon.com/join/lunixbochs
https://en.wikipedia.org/wiki/NATO_phonetic_alphabet

You can capitalize letters by prefixing them with “ship”. “ship drum”

will output instead of .

Numbers are spoken normally, from 0 through 9. If I wanted to

output , I would speak “one zero two four”.

Talon has intuitive mappings for most special characters.

, for example, will hold while pressing the key, to

copy to the clipboard. will open the Emoji

drawer on MacOS, since that's the OS-level mapping.

Certain keys are mapped to shorter/cuter terms. Instead of

"backspace", I say "junk". "Delete" becomes "dell". If you're unhappy

with any of the mappings, by the way, everything is editable in Talon.

Arrow keys are prefixed with the word "go". If I want to move the

cursor left, I say .

This would be really tedious if not for one awesome addition:

ordinals.

In English, an ordinal number is one used to describe order, like

"fifth" or "ninth" or "three hundredth". In Talon, they're used to repeat

commands. If I wanted to go left by 9 spaces, I would say

.

The phrasing is a little strange. Surely, "go left nine" would be more

intuitive, right? But is already taken; it outputs the literal

number .

This works for all commands. If I wanted to write the number , I

would say , to repeat the character 3 times.

D d

1024

Hotkeys and ordinals

command

cap command C

control command space

go left

go left

ninth

nine

9

1000

one zero third 0

The conventional way to write JavaScript uses camelCase for

variables. In fact, there are lots of conventions when it comes to

variable names! Talon has a solution for this: formatters.

A formatter is a command which will transform the text spoken

afterwards. When I say “camel hello world”, for example, the

software outputs . Conversely, “snake hello world”

produces .

If you want to output text without transforming it, the command is

. “say hello world” will output .

Formatters can be composed. For example, I'm a fan of

UPPER_SNAKE for JavaScript constants:

To output , I can combine the and

formatters. “allcaps snake dark colors” outputs .

While Talon does have a "dictation mode", the default mode is

command-based. Commands can be thought of as functions.

Everything we've seen so far is command-based.

Formatters

helloWorld

hello_world

say hello world

const DARK_COLORS = {

 primary: ,

 // ...and so on

};

DARK_COLORS snake allcaps

DARK_COLORS

Command mode

JS

For example, when I say , it's like I'm calling the

function, and passing as an argument. is a command

that focuses the specified application, so this would be equivalent to

using Spotlight to select Chrome.

 isn't some black-box native thing built into Talon, though; it's

part of a community package of commands. I can access and edit the

source, which is written in Python:

The real power of Talon is being able to create your own commands. It

offers a bunch of APIs for interacting with the operating system and

outputting characters. I've created a dozen handy utilities for front-

end development, and I expect I'll add many more as I keep using it.

You can add simple "say X to produce Y" commands using a YAML-

like syntax:

focus chrome focus

chrome focus

focus

class Actions:

 def switcher_focus(name: str):

 for app in ui.apps():

 if name in app.name and not app.background:

 app.focus()

 break

react: insert("import React from 'react';")

PY

YAML

When I speak "react", the software outputs

.

For more complex commands, you can write Python functions. As an

example, here's what happens when I say “styled button fancy

button”:

The second word, , is matched against a known set of HTML

elements. The subsequent words, , are

UpperCamelCased and used for the component name. It adds some

whitespace, and moves the cursor to the appropriate spot.

Here's the Python source for the command:

And here's the Talon mapping:

import React from

'react';

const FancyButton = styled.button

 | <-- Cursor placed here

;

button

fancy button

@ctx.capture(rule=)

def create_styled_component(m):

 component_name = actions.user.formatted_text(

 m.text,

)

 return {component_name} {m.html_elements}

JS

PY

Programming Talon commands is beyond the scope of this article. If

you're interested, check out the unofficial Talon docs. You can also

learn a ton by reading how existing commands are implemented.

You can also check out my fork of the commands, which includes all

the React stuff I've added—be warned, though, it's messy,

incomplete, and poorly documented.

No matter how good speech recognition gets, there will always be

ambiguities that will be difficult to resolve.

For example, if I say "check out my site", do I mean or ?

Or possibly ??

To resolve these ambiguities, Talon includes a command:

<user.create_styled_component>:

 insert(create_styled_component)

 key('left enter enter up tab')

Homophones

site sight

cite

phones

https://talon.wiki/unofficial_talon_docs/
https://github.com/joshwcomeau/talon-commands

I learned about this trick from Emily Shea's amazing conference talk,

Perl Out Loud.

By far the most sci-fi part of my setup is my eye-tracker.

I use the tobii 5. It's a bar with an infrared sensor, and it tracks your

eye motion. It slaps onto the front of your monitor:

Menu UI!

In order to select the correct homophone, Talon pops open a little

menu. Because everything in Talon is made available through APIs, I

imagine we can use the same UI for other things!

I'm excited to experiment more with this idea.

Eye-tracking as a mouse replacement

https://twitter.com/yomilly
https://www.youtube.com/watch?v=Mz3JeYfBTcY&feature=emb_logo
https://gaming.tobii.com/product/eye-tracker-5/

Interestingly, it isn't marketed as a mouse replacement; it's designed

for Windows users for some sort of competitive gaming purpose. But

Talon—the same software I use for dictation—includes custom

MacOS drivers that allow it to function as a mouse replacement.

Clicking is a two step process. First, you look where you want to

click, and make a popping noise with your mouth. This will zoom way

in, and allow you to be really precise with your click. A second pop

will perform a left-click:

There are commands to double-click, to right-click, and to drag and

release. It takes some getting used to, but it works surprisingly well.

The accuracy is good enough to do some pretty precise things.

The tobii 5 sells for $229 USD. You can also try and find the tobii 4C,

which is purported to offer a smoother experience with Talon, but

they're really rare.

So far, I've shared only the tip of the iceberg of what I've learned, and

what I've learned is only the tip of an even-bigger iceberg—Talon is a

really powerful tool, and I'm still figuring it out. It took years to

The bigger picture

become proficient with a keyboard, so I'm still very early into my

journey with dictation.

In fact, I'd say that this whole cottage industry is pretty new. Talon is

a wonderful piece of technology, and it's already had a huge positive

impact in my life, but I think there's so much potential and

opportunity ahead.

Talon continues to improve every day—it uses a proprietary machine-

learning algorithm to handle speech-recognition, and I've already

seen a noticeable improvement with it. Other products like Serenade

seem pretty compelling as well.

Meanwhile, companies like Neuralink are working on establishing a

"direct link" between our brains and everyday technology. It sounds

like science fiction, but I may soon be able to "think" my code into

existence ✨😮✨

I'd say I probably work at about 50% of my normal speed . Now, this

doesn't mean that I produce 50% of the results; it just means I need

to prioritize a little more ruthlessly.

I've heard that learning Vim can make this much more effective.

Depending on how much longer my injury lasts, I may consider

switching.

The biggest issue I've found so far is voice strain; I'm not used to

talking for 8+ hours a day! I imagine I need to build a tolerance, and I

hope to get better at this with time.

My results so far

*

https://serenade.ai/
https://neuralink.com/

The first few weeks were rough. In addition to it being slow and

frustrating, Talon work best when you write your own commands. I'd

wind up hurting myself trying to get it set up. Being able to configure

Talon by voice is a real milestone, and it's gone much smoother since

then.

Honestly, it's just been such a relief to discover that my hands aren't

needed for me to do my work. Recently, I heard Kent C Dodds and

Joel Hooks talking on the egghead podcast about how Kent's wary of

injuring his hands, since as a software developer and educator,

they're his money-makers . I used to feel the same way, whereas now

I see that with a bit of determination and a lot of awesome

technology, nothing's gonna stand in my way 💖

There's something else I want to talk about, and it's a bit less fun.

Here's the thing: you are not likely to develop Cubital Tunnel

Syndrome. Even if you do, it'll likely go away on its own after a few

weeks; many cases resolve spontaneously, and most respond well to

conservative treatments. I'm an edge-case.

At some point in your life, however, you will likely experience some

sort of impairment, whether temporary or permanent. Almost all of us

will .

It's so so easy to fall into the trap of thinking about accessibility as

something that affects other people, a hypothetical abstract group.

I've known that accessibility is important for years, but it felt kinda

nebulous to me; I've never watched someone struggle to use a thing I

*

Accessibility matters

*

https://egghead.io/podcasts/kent-c-dodds-chats-about-how-epic-react-was-designed-for-learner-success

built because I neglected to test it without a mouse or keyboard. It

feels more urgent to me now.

I am still incredibly privileged, and I don't mean to compare my

situation to anybody else's. But this experience has given me a

window into what it's like trying to operate on an internet not

designed with alternative input mechanisms in mind. Before I got

comfortable with the eye-tracker, things were tricky. And certain

things are much more difficult than they used to be.

The internet has become critical infrastructure. It's a necessary part of

living in modern society, and it needs to be accessible! As front-end

developers, it's our job to advocate for it, and to ensure that we build

with accessibility principles in mind.

If you'd like to learn more about accessibility, I recommend checking

out a11y.coffee.

I've learned one other thing from this experience: I should prioritize

stuff which is important to me!

One of the very first web apps I built was an education platform. This

was about a decade ago, and it was built with PHP, MySQL, and

jQuery.

I gave up on that product when I discovered Khan Academy, which

was essentially what I was doing, but way better. I would later go on

to work as a software engineer at Khan Academy, and do some of the

most fulfilling work of my career.

No time like the present

https://a11y.coffee/
https://www.khanacademy.org/

I've long since imagined that at some point, I'd start my own thing in

education. Even though I've been motivated to do this for years, I

kept putting it off. This experience has taught me something

valuable: I don't have an infinite amount of time ahead of me. If

there's something I want to do, I should do it now, since I may not be

able to do it later.

A few weeks ago, I left my job as a Senior Staff Software Engineer at

Gatsby Inc, to pursue this dream. My first project is an online

interactive course that teaches advanced CSS skills to JS developers.

I've seen so much frustration around CSS, and the goal is to give you

rock-solid confidence, the ability to implement any layout and build

all kinds of cool, next-level experiences.

You can learn more about it on the CSS for JavaScript Developers

site.

I'd like to thank two friends and former coworkers who suggested the

idea of dictation to me: Amberley and Madalyn. I'm not sure the idea

ever would have occurred to me!

I was also inspired by two conference talks on this subject:

Perl Out Loud, by Emily Shea

Using Python to Code by Voice, by Tavis Rudd

Acknowledgments

https://css-for-js.dev/
https://twitter.com/amber1ey
https://twitter.com/madalynrose
https://www.youtube.com/watch?v=Mz3JeYfBTcY&feature=emb_logo
https://twitter.com/yomilly
https://www.youtube.com/watch?v=8SkdfdXWYaI
https://twitter.com/tavisrudd

Did you enjoy this look into an alternative

workflow? Share it with your network on twitter!

Share on Twitter

A front-end web development newsletter
that sparks joy

My goal with this blog is to create helpful content for front-

end web devs, and my newsletter is no different! I'll let you

know when I publish new content, and I'll even share exclusive

newsletter-only content now and then.

No spam, unsubscribe at any time.

First Name

Email

https://twitter.com/share?url=https://www.joshwcomeau.com/blog/hands-free-coding/&text=%E2%80%9CHands-Free%20Coding%E2%80%9D%2C%20an%20article%20from%20Josh%20Comeau.%20&via=JoshWComeau
https://twitter.com/share?url=https://www.joshwcomeau.com/blog/hands-free-coding/&text=%E2%80%9CHands-Free%20Coding%E2%80%9D%2C%20an%20article%20from%20Josh%20Comeau.%20&via=JoshWComeau

Last Updated: December 9th, 2020

SubscribeSubscribe

Josh Comeau

Tutorials

React Animation

CSS Career

Gatsby Next.js

Performance JavaScript

Links

Twitter

Contact

Terms of Use

Privacy Policy

© 2020-present Joshua Comeau. All Rights Reserved.

https://www.joshwcomeau.com/
https://www.joshwcomeau.com/tutorials/react/
https://www.joshwcomeau.com/tutorials/animation/
https://www.joshwcomeau.com/tutorials/css/
https://www.joshwcomeau.com/tutorials/career/
https://www.joshwcomeau.com/tutorials/gatsby/
https://www.joshwcomeau.com/tutorials/nextjs/
https://www.joshwcomeau.com/tutorials/performance/
https://www.joshwcomeau.com/tutorials/javascript/
https://twitter.com/joshwcomeau
mailto:support@joshwcomeau.com
https://www.joshwcomeau.com/terms/
https://www.joshwcomeau.com/privacy/

