
In the last couple weeks, we've migrated away from to a
simpler database setup at . We’ve gotten a few questions about this, so
we wanted to share what motivated the move, what we learned, and how we
pulled it off. Supabase is an enormously successful product with a lot of happy
users, but we ended up having a lot of problems getting to scale to our team's
needs. Your mileage may vary, but we hope our experience is a useful data point.

Background

Supabase

Local development was tough

Documentation

Downtime

Database philosophy

Using Supabase as Postgres

Using Postgres as Supabase

Designing for Supabase

Where to go?

The Rewrite

The Migration

Onwards and upwards

 was started by Steve Krouse in July 2022 as a site to write, run,
deploy, and share snippets of server-side JavaScript. Our users describe us as
“Codepen for the backend”. Folks use us to make little APIs, schedule cron jobs,

Val Town Supabase
Render

Background
Val Town

Migrating from Supabase

Val Town Blog Val Town

https://val.town/
https://supabase.com/
https://render.com/
https://val.town/
https://val.town/
https://blog.val.town/

and make little integrations between services, like ,
, , etc.

Steve built the initial version of Val Town on Supabase. I �Tom MacWright) joined
in Jan 2023.

Supabase can be a way to build your entire application backend without writing
a backend server. Supabase is a database, but it also gives you ways to control
access with . Then it lets you query your database right from
your frontend, by using . They integrate as an authentication
layer and let users sign up for your service. And finally there’s a full-fledged UI
that lets you administrate the database and all of the related services without
writing a line of code or using a CLI.

In effect, Supabase turns your database into an entire backend application. It
does so by using every Postgres trick in the book: not just row-level security, but
we were using triggers, materialized views, database roles, and multiple
schemas. Postgres is a tremendously powerful platform: you can go as far as
writing JavaScript embedded in SQL to write logic in the database.

When it worked well, it was spectacular: it was the speed of using Firebase,
which I had heard about so many times, but with a fast-moving open source
stack.

The biggest problem we encountered using Supabase was local development.
When I joined, all of our development happened in production: everyone
connected to the production database, all of our “migrations” where performed
by modifying the live database schema. We’d test migrations by duplicating
tables in production and migrating them before doing it for real. Sometimes we’d

downtime detectors price
watchers programmatic notification services

Supabase

row security policies
PostgREST gotrue

Local development was tough

https://www.val.town/@healeycodes.isMyWebsiteDown
https://www.val.town/@chet.watchWebsite
https://www.val.town/@Glench.wholeFoodsRSS
https://www.val.town/@bnorick.exampleCheckReddit
https://www.val.town/v/stevekrouse.hnFollowPollJob
https://www.val.town/@stevekrouse.twitterAlert
https://www.val.town/@stevekrouse.pollRSSFeeds
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://postgrest.org/en/stable/
https://github.com/supabase/gotrue

use the web interface to change things like column types and indexes, which is
the scariest of all – it doesn’t provide a SQL preview of what it’s about to do, and
sometimes .

This, to me, was pretty scary. Usually engineering teams work with local
development environments and staging environments, and only cautiously and
briefly touch the production database.

Thankfully, Supabase has been developing a toolchain for local development: the
. The CLI manages the Supabase stack locally: Postgres, gotrue, a

realtime server, the storage API, an API gateway, an image resizing proxy, a
restful API for managing Postgres, the Studio web interface, an edge runtime, a
logging system, and more – a total of 11 Docker containers connected together.

Unfortunately, we just couldn’t get it to work. I hit everything from
, to a database migration system that custom

roles, to . We weren’t able to get a local development
environment working for more than a day at a time: the CLI would break, or
migrations were generated incorrectly and couldn’t be applied.

Part of the trouble with using the CLI was that the documentation isn’t quite
written yet. The command is documented as
"Commit Remote Changes As A New Migration". The command supabase
functions new is documented as "Create A New Function Locally." The
documentation page is beautiful, but the words in it just aren't finished. These are
crucial commands to document: db remote commit actually affects your local
database and tweaks migrations. It’s really important to know what it’ll do before
running it.

Unfortunately, the documentation on other parts isn't much better: for example,
the Supabase has a decent tutorial, but is missing any
conceptual or API reference documentation. Only after spending a day or two
implementing the Remix integration did I realize that it would require a reset of
all our user sessions because using it meant switching from localStorage to
cookie-based authentication.

Then came the downtime. Val Town is responsible for running scheduled bits of
code: you can write a quick TypeScript function, click the Clock icon, and
schedule it to run every hour from then on. We noticed that vals would stop
working every night around midnight. After a bit of sleuthing, it ended up that
Supabase was taking a database backup that took the database fully offline
every night, at midnight. This is sort of understandable, but what's less lovely is

what it does is unexpected

Supabase CLI

broken
Docker containers couldn't handle

missing CLI help

Documentation

supabase db remote commit

Remix integration

Downtime

https://github.com/supabase/supabase/issues/13234
https://github.com/supabase/cli
https://github.com/supabase/cli/issues/870
https://github.com/supabase/cli/issues/877
https://github.com/supabase/cli/issues/921
https://github.com/supabase/cli/issues/878
https://supabase.com/docs/reference/cli/supabase-db-remote-commit#supabase-db-remote-commit
https://supabase.com/docs/guides/auth/auth-helpers/remix

that it took a full week to get them to stop taking those backups and taking us
offline.

Now, to be fair, Val town currently pummels databases. It’s a write-heavy
application that uses a lot of json columns and has a very large table in which
we store all past evaluations. And Supabase was very helpful in their support,
even helping us rearchitect some of the database schema. The application that
we’re running is, in a way, a stress test for database configuration.

Supabase has a sort of unusual scheme for database size. Instead of pre-
allocating a large database and filling it over time, databases start off small and
are auto-resized as they grow. Your database starts out at 8GB, then gets
upgraded once it hits 90% of that to a database 50% larger. Unfortunately, there
was a fluke in this system: one Sunday, their system failed to resize our database
and instead we were put in read-only mode with the disk 95% full. If you've dealt
with systems like this before, you can guess what happens next.

If you get that close to your maximum disk size, you get a sort of catch-22�
everything that you want to do to reduce the size on disk requires a little extra
temporary space, space that you don’t have. Maybe you want to a
table to cut down on size - well, the VACUUM operation itself requires a little
extra storage, just enough to put you over 100% of disk utilization and cause a
restart. Want to try and save a few bytes by changing the type of a column?
You'll hit 100% utilization and restart.

To make matters worse, the Supabase web user interface heavily relies on the
database itself - so the administration interface would crash when the database
crashes. It’s nice and preferable to have separate systems: one that runs the
administration interface, another that is the thing being administrated.

Anyway, after a panicked Sunday afternoon four-alarm fire, I found a table that
we were no longer using, which freed up 5 gigabytes of storage and let us get
out of read-only mode. A few hours later the support team responded with an
update.

Part of the moral of the story is that databases are hard. You could make a
company of just running databases reliably and be successful if you can be
reliable and scalable. There are whole companies like that, like .
Database management is a hard and unforgiving job. But this is why we pay
managed providers to be the wise experts who know how to tune
shared_buffers and take backups without interrupting service. Sure, it’s nice to

have a great user interface and extra features, but a rock solid database needs
to be the foundation.

VACUUM

Database philosophy

CrunchyData

Using Supabase as Postgres

https://www.postgresql.org/docs/current/sql-vacuum.html
https://www.crunchydata.com/

Under the hood, Supabase is just Postgres. If you want to sign up for their
service, never use the web user interface, and build your application as if
Supabase was simply a Postgres database, you could. Many people do, in fact,
because they’re one of the few providers with a free tier.

The hard part, though, is that if you use Supabase as a “Firebase alternative” – if
you try to build a lot of your application layer into the database by using
triggers, stored procedures, row-level security, and so on – you’ll hit some places
where your typical Postgres tools don’t understand Supabase, and vice-versa.

For example, there are plenty of great systems for managing migrations. In the
TypeScript ecosystem, and were at the top of our list. But
those migrations don’t support triggers, or row level security, so we would have
a hard time evolving our database in a structured way while still following the
Supabase strategy. So migrations would be tough. Querying is tough too –
querying while maintaining row-level-security is
but it isn’t clear how you’d do it in or drizzle-orm.

The same sorts of disconnects kept happening when we tried using our database
as Postgres and then administrating it sometimes with Supabase. For example,
we’d have a json column (not jsonb), but because the Studio interface was
opinionated, it . Or we’d have JSON
values in a table, and be unable to export them because of in
the web interface. We’d see issues with composite foreign keys

 and be afraid of issues where modifying the schema via the UI ran
unexpected and . A lot of these issues were fixed - the Studio
now shows varchar and json types instead of a blank select box, and should
export CSVs correctly.

In both directions, it felt like there were disconnects, that neither system was
really capturing 100% of its pair. There were too many things that the typical
database migration query tools couldn’t understand, and also things that we
could do the database directly that wouldn’t be correctly handled by the
Supabase web interface.

Unfortunately, some of the limitations of the Supabase strategy trickled into our
application design. For example, we were building all of the controls around data
access with Row-Level Security, which as the name implies, is row-level. There
isn't a clear way to restrict access to columns in RLS, so if you have a "users"
table with a sensitive column like "email" that you don't want everyone to have
access to, you have a bunch of tough solutions.

Prisma drizzle-orm

a subject of discussion in Prisma
Kysely

Using Postgres as Supabase

wouldn’t correctly show the column type
broken CSV export

being displayed
incorrectly

destructive queries

Designing for Supabase

https://prisma.io/
https://github.com/drizzle-team/drizzle-orm
https://github.com/prisma/prisma/issues/12735
https://github.com/kysely-org/kysely/issues/330
https://github.com/supabase/supabase/issues/11910
https://github.com/supabase/supabase/issues/13171
https://github.com/supabase/supabase/issues/3583
https://github.com/supabase/supabase/issues/13234

Maybe you can of that table, but it's easy to shoot
yourself in the foot and accidentally make that publicly-readable. We ended up
having three user tables � Supabase’s internal table, auth.users , which is
inaccessible to the frontend, a private_users table, which was accessible to
the backend, and a users table, which was queryable from the frontend.

We also architected a lot of database tables because we couldn’t
write efficient queries using the default Supabase query client. Of course there
are always tradeoffs between query-time and insert-time performance, but we
were stuck at a very basic level, unable to do much query optimization and
therefore pushed to either write a lot of small queries or store duplicated data in
denormalized columns to make it faster to query.

I suspect that there’s a way to make this work: to write a lot of SQL and rely
heavily on the database. You can do anything in Postgres. We could write tests
with and . But this
would buy us even more into the idea of an application in our database, which
for us made things harder to debug and improve.

Ultimately, we switched to using a “vanilla” Postgres service at .

We didn’t want to self-host Supabase, because the devops issues were only part
of the problem: we just wanted a database. Render has been hosting the rest of

 for a few months now and has been pretty great.
 are amazing: they spin up an entire clone of our whole stack —

frontend remix server, node api server, deno evaluation server, and now postgres
database — for every pull request. The system is a nice
middle ground between manually configured infrastructure and the reams of
YAML required to configure something like Kubernetes.

We considered a couple other Postgres hosts, like CrunchyData, neon, RDS, etc,
but it’s hard to beat Render’s cohesive and comprehensive feature-set. They are
also extremely competent and professional engineers; I’ve hosted applications on
Render for years and have very few complaints.

The goal was to be able to run the database locally and test our migrations
before applying them in production. We rewrote our data layer to treat the
database as a simple persistence layer rather than an application. We eliminated
all the triggers, stored procedures, and row-level security rules. That logic lives in
the application now.

We dramatically simplified how we're using the database and started using
 to build SQL queries. It works like a dream. Now our database

schema is captured in code, we can create pull requests with proposed database

create a database view

denormalized

pgTAP write JavaScript inside of Postgres functions with plv8

Where to go?
Render

Val Town Render Preview
Environments

Blueprint Specification

The Rewrite

drizzle-orm

https://github.com/orgs/supabase/discussions/1275
https://en.wikipedia.org/wiki/Denormalization
https://pgtap.org/
https://supabase.com/docs/guides/database/extensions/plv8
https://render.com/
http://val.town/
https://render.com/docs/preview-environments
https://render.com/docs/blueprint-spec
https://github.com/drizzle-team/drizzle-orm

migrations, and nobody connects to the production database from their local
computers. We were even able to eliminate a few tables because we could more
efficiently query our data and define more accurate access controls.

Migrating the data took a week. The first issue was how large our database is:
40gb.

We considered taking our service down for a couple hours to do the migration.
But we’re a cloud service provider and we take that responsibility seriously: if we
go down, that means our user’s API endpoints and cron jobs stop running.
Downtime was our last resort.

The key insight was that 80% of our data was in our tracing table, which stores
the historical evaluation of every Val Town function run. This was historical data
and isn’t essential to operations, so we chose to first migrate our critical data
and then gradually migrate this log-like table.

The next problem was improving the download and upload speeds. We spun up
an ec2 sever next to Supabase in us-east-1 for the download and a server in
Ohio Render region to be as close as possible for the downloads and upload,s
respectively. After some more pg_dump optimizations, the download of
everything but the tracing table took 15 minutes. We scp-ed it to the Render
sever and did a pg_restore from there, which took another 10 minutes. We then
cut our production servers over to the new Render Postgres database.

We informed our customers about the migration and that their tracing data would
be restored shortly in the background. There was a handful of new data that had
been created in the intervening �30 minutes. We pulled that diff data manually,
and uploaded it to the new database. The evaluations table dump took all night.
Then the scp itself took a couple hours hours and $6 in AWS egress fees. It took
another night to finish the upload of the historical tracing data.

Word to the wise: when you’re moving data into and out of databases, it pays to
do it in the same network as the database servers.

Now that is humming along with a simple Postgres setup on Render,
we’re able to evolve our database with traditional, old-fashioned migrations, and
develop the application locally. It feels strangely (back to the) future-istic to
have migrations that run locally, in preview branches, and upon merging to main.
I shipped likes (the ability to ❤ a val) in a couple hours, and importantly, without
anxiety. Back in our Supabase days, we delayed features like that merely
because touching the database schema was scary.

Sometimes we miss the friendly table view of the Supabase interface. We watch
their with awe. Using Supabase was like peeking into

The Migration

Onwards and upwards
Val Town

spectacular launch weeks

http://val.town/
https://supabase.com/launch-week

an alternative, maybe futuristic, way to build applications. But now we’re
spending our elsewhere, and have been able to ship faster
because of it.

innovation tokens

https://boringtechnology.club/

