
Andy Dote Archive Talks Notes Tags Contact RSS

Expand Contract for Databases and
Services
May 18, 2023 · 4 min

I haven’t seen Expand-Contract written about in some years, and I think it is a great way

of performing database schema migrations without the need for application downtime. I

also realised that it also applies to microservices and service-to-service communication in

general.

The Easy Example
One of the two examples given is wanting to change how an address is stored in a

database. The schema starts off looking like this:

id name address

1 Reaktor Läntinen Rantakatu 15, 20100, Turku, Finland

The requirement is that the schema is changed to look like this:

id name street postcode town country

1 Reaktor Läntinen Rantakatu 15 20100 Turku Finland

The way you would traditionally achieve this is with a migration:

alter table buildings

 add column street text,

 add column postcode text, -- postcodes can start with a 0, so store them as text

 add column town text,

 add column country text

update buildings set

https://andydote.co.uk/
https://andydote.co.uk/archive
https://andydote.co.uk/talks
https://andydote.co.uk/notes
https://andydote.co.uk/tags
https://andydote.co.uk/contact
https://andydote.co.uk/rss.xml

The problem with doing this is that the software using this table needs to be stopped while

the update is happening; if the old version is running, the app will suddenly be trying to

query a non-existing column. If the new version is running, it will also be trying to query

non-existing columns.

The process has to look like this:

1. stop the old app

2. run the migration

3. start the new app

Step 2 however can be long, especially if there is lots of data. And what happens if you

cannot have downtime for your service?

The Expand Contract Way
1. add a new column to the table (nullable)

2. release new software

for reads, read both old and new columns; prefer data in new columns if it exists

for writes, write to new columns

3. run a script to migrate any remaining data

4. release new software

only reads new columns

only writes new columns

5. drop the old column

 street = split_part(address, ',', 1),

 postcode = split_part(address, ',', 2),

 town = split_part(address, ',', 3),

 country = split_part(address, ',', 4)

where

 address != ""

alter table buildings

 drop column address

This is more steps than the original method, but it means there is no downtime in your

system. Also, if you make step 2 write to both columns, the migration is easily reversible

as no data is lost until the fourth step runs. .

What about APIs? Services?
Expand Contract doesn’t have to just be about services either. For example, you have two

services and have decided that part of service A should be migrated into service B, which

has a similar system. The process is broadly similar to the database example above but

with service releases instead:

1. Service B’s data model is expanded

2. Service A is released:

for reads, read both it’s own datastore and Service B. Return result from B if available

for writes, write to it’s own datastore and Service B

3. Run a script/application to migrate the remaining data

4. Release Service A:

uses Service B for all operations

5. Drop old data store tables

As you can see, the process is broadly similar to when implementing a database change;

the only difference is some coordination with the other service team. The coordination is

only to make sure their data model is ready; no need to release anything at the same time,

and no downtime in either service is required.

Downsides
This may sound like a silver bullet, but as with all techniques, it has drawbacks.

The primary drawback is the extra steps required. There are multiple releases, and data

migrates lazily/on demand. Then there is the extra step of migrating the remaining data,

which is an additional effort.

The other drawback is a symptom of the first drawback: time. It takes far longer to do

expand-contract than to have a short downtime. Depending on your application, short

downtime might be the better choice to make. For example, a queue processing service

which doesn’t have a synchronous API would probably be better choosing the downtime,

assuming it can catch up with any messages which queue up during the downtime!

database feature flags microservices architecture

NEXT PAGE »

Feature Flags in a CI Pipeline

https://andydote.co.uk/tags/database/
https://andydote.co.uk/tags/feature-flags/
https://andydote.co.uk/tags/microservices/
https://andydote.co.uk/tags/architecture/
https://andydote.co.uk/2023/01/16/feature-flags-ci/

