
esac

Friends, coders, I come not to praise bash, but to contextualize it.

Bash is oft-maligned: you hear it sneered at in sentences like "our

continuous integration pipeline is just a pile of bash scripts." It is commonly

regarded as unintelligible and thus unmaintainable. The pile of bash scripts

are the toxic byproduct of an infrastructure team understaffed, pressed for

time, unwilling or unable to do it "the right way" in a blessed programming

language, such as Ruby, Python, or, uh, ... YAML?

-- Julia Evans, @b0rk, via tweet

7 minute read | 2021-04-02

The Case For Bash

some problems with bash:

1. It's a weird & counterintuitive language

2. you probably don't need to write it that often, so you

don't practice

3. the times you DO need to use it, it's often because

something important (like a build) broke and it needs to

be fixed RIGHT NOW

“

NEVERSAWUS

https://mobile.twitter.com/search?q=%22pile+of+bash+scripts%22
https://twitter.com/b0rk
https://twitter.com/b0rk/status/1337953874309754880
https://www.neversaw.us/

Julia has a a great zine that will get you comfortable with Bash. I'm not

going to try to do that in this post! Instead, I'm going to try to convince you

why it's worth learning Bash. To do that, I'm going to talk about the problem

space that Bash thrives in, and why other languages are a bad fit for that

same space.

So, about problem spaces and languages. You might be familiar with the

idea that any language with sufficient flow-control primitives can express

the same algorithm that any other language of that class can express. In

other words, given access to the same system APIs, the same approach to

solving a problem could be expressed in Java, Ruby, or Bash. By

comparison to art, if you had to render an image of the inky blackness of

outer space, you could accomplish it with pen and ink or with a flat brush

and paint. One approach will save you a lot of time (and wrist problems!)

This is to state by example: certain tools are better adapted to certain

problems. You, as a programmer, are likely to run into a wide range of

problems requiring a corsucating variety of problem-solving approaches in

your career. The first, best tool that we can bring to bear on the problems

before us is language, and thankfully we have a variety from which to

choose.

Languages lend themselves to solving a subset of the problems you're

likely to encounter. When selecting a language to fill a particular niche in

your toolset, there are a number of considerations: performance, popularity,

ubiquity, familiarity, capability, amongst others. Languages will overlap

niches: C, C++, Java, Go, and Rust are good choices for problems where

performance is a primary concern. Python, JavaScript, and Ruby are

excellent multitools where performance isn't a problem. All are popular

languages with active ecosystems. There is no universal correct answer,

even amongst languages with overlapping capabilities, because every

language has different values that suit different people.

“

https://wizardzines.com/zines/bite-size-bash/
https://wiki.c2.com/?TuringEquivalent

-- "How Rust Views Tradeoffs", Steve Klabnik, @steveklabnik

I haven't talked about Bash yet.

So, what does Bash value? One might be tempted to say "ubiquity". Bash

is available nearly everywhere these days; but ubiquity is a quality that is

conferred from outside the language. Preserving ubiquity can be a value --

see JavaScript and backwards compatibility, or C and the PDP-11 -- but it's

difficult to positively attain ubiquity.

Instead, Bash values a very particular fitness for purpose: the management

and coordination of programs. This includes spawning processes,

connecting processes via pipelines, and parallelizing processes. The

purpose of Bash is running other programs. Consider the following:

tail -fq /var/log/nginx/access.log | awk '{print $7}' | sort | uniq

"Follow the ngnix access log; print the 7th word (the path); sort those

paths, count the number of unique instances, and then sort the results by

occurrence count."

const { spawn } = require('child_process')

const tail = spawn('tail', ['-fq', '/var/log/nginx/access.log'])

const awk = spawn('awk', ['{print $7}'], {stdio: [tail.stdout, 'inh

const sort = spawn('sort', [], {stdio: [awk.stdout, 'inherit', 'inh

// ...

As a programmer, I think it behooves us to think about not just the

values that we hold, but the values of the people that use our

software hold and, as a programmer, you should use tools that

align with your values.

“

https://www.infoq.com/presentations/rust-tradeoffs/
https://twitter.com/steveklabnik
https://en.wikipedia.org/wiki/Common_Log_Format

This is a contrived example, but there's a lot more going on in the Node

example than there is in the Bash one. The Python and Ruby versions

would be similar. The core data primitive of Bash is a running process. It

has distinct syntax for dealing with the input and output of those processes,

for capturing that output as a variable, and dealing with process exit

conditions. The boilerplate you'd type in another programming language is

the default in Bash.

It values running programs over assigning variables, over branching, over

everything. If you don't believe me, consider that the common mode for if

statements in Bash is if [<test>]; then <stmt>; fi. Now go

run less /bin/[. That's right: [is a program being run by the if builtin.

Bash's choices don't make a lot of sense coming from other languages: 0

is "true" or "success", strings inside variables often need to be re-quoted on

use, the loop and conditional logic is off-the-wall; but it makes sense in

context of its values (and, well, history.)

It's true that a lot of what I've said about Bash is equally true of other shell

scripting languages: Fish, Zsh, Powershell, and Nushell all value similar

things. It's worth learning these languages! However, if you're dealing with

Linux servers on a daily basis, it's definitely worth learning Bash. Even if

you're not, it's worth learning just to understand what these other shell

scripting languages are reacting to. Bash's for loops might be weird, but if

you can familiarize yourself with them, you can use that knowledge

everywhere from your personal laptop to a server running on AWS and

back down to a shell running on your local router.

You (can) use Bash every time you open a terminal session. This

knowledge compounds over time: you don't have to learn the entire

language to be more efficient. You can layer in new concepts every few

weeks and before you know it, it'll be muscle memory. Any time you're

presented with the need to write a one-off program to accomplish a small

task, take the opporunity to puzzle out how to write it as a shell script. The

difficulty of learning Bash is less in learning the language itself, and more in

identifying what programs you should call to accomplish your goal. This is

like any other language: finding the right API and the right way to call it

forms the bulk of day-to-day programming effort. So, give it a whirl!

Remember that there are alternatives to tricky APIs! If you do, you'll have a

valuable tool that fills a niche most other popular programming languages

struggle to address.

RSS @isntitvacant@hachyderm.io @isntitvacant

github.com/chrisdickinson

NEVERSAW.US is Chris Dickinson’s personal blog

https://httpie.io/
https://www.neversaw.us/rss.xml
https://hachyderm.io/@isntitvacant
https://twitter.com/isntitvacant
https://github.com/chrisdickinson
https://www.neversaw.us/

