
Join us at PulumiUP, a virtual event featuring demos, technical talks and more. Register.

Toggle Blog Navigation

Read Every Single Error

Posted on Tuesday, Mar 21, 2023

Evan Boyle

At Pulumi we read every single error message that our API produces. This is the primary mechanism that
led to a 17x YoY reduction in our error rate. You’re probably wondering how reading error messages make
them go away.

Doesn’t common wisdom tell us that we need a fancy observability toolchain, or to follow the Google
SRE model? I can confidently say that you don’t. I’ll go a step further and state that throughout my
career, every system I’ve worked on that relied on aggregate views of errors was a complete dumpster
fire. In every team where we instead chose to read all the errors, reliability naturally improved over time.

I offer a concrete process that will drive your error rates down over time with math to back it up.

Read Every Error Message That Your System

Produces

You should read every error message that your system produces. Simple but effective. Our team pumps
every 5XX into a Slack channel and reviewing each of these is a top priority for the current on-call

https://www.pulumi.com/pulumi-up/
https://www.pulumi.com/
https://www.pulumi.com/blog/author/evan-boyle/
https://www.pulumi.com/blog/author/evan-boyle/

engineer. There’s a little more to it, but that’s the gist! Commit to this process and your error rates are
guaranteed to drop. And I can prove it!

Reliability from First Principles

Why does reading error messages imply improving error rates? It isn’t magic. You still have to dedicate
time to fix the bugs you’re shipping and make proactive investments. But you can model this process
with a simple inequality:

(API Call Volume) * (Error Rate) * (Time to Triage an Error) < On-Call Attention

This comes with a few important constraints:

 On-call attention is a fixed commodity

 API call volume scales with your business

 This process requires reading every error message

The end result is simple. Your error rate must improve over time to keep the scales balanced. If it
doesn’t, the process becomes untenable.

Let’s assume you have one engineer on call, and they spend at most an hour a day triaging errors (they
have other responsibilities too!� on each of the �250 business days per year. That’s a cap of 250 hours
per year that can be spent triaging errors. This is effectively fixed. Sure you can hire and split systems
out into separate on-call rotations to increase capacity, but our goal is to scale exponentially with
respect to humans, not linearly!

Let’s say that triaging an error is a 5-minute process that might involve any of the following:

Checking the issue tracker for a pre-existing ticket to add additional context, a �1, etc.

Reaching out to a teammate who just shipped some buggy code so they can get a fix out

Filing a well-documented bug

Starting a Slack thread with the team to raise a known issue that seems to be cropping up more
regularly

Just opening a PR if it’s a simple fix

Remember we only have 250 hours or 15,000 minutes per year to triage with a single on-call engineer. At
five minutes a pop we can triage �3000 errors per year until things start dropping on the floor.

Now imagine you work on a new product and you just launched your MVP. It is early days, but there is
some traction and you’re seeing API traffic at a rate of 1,000,000 requests per year. Your annual budget
for triaging as we previously determined is 3000 errors, which yields a maximum permissible error rate of
0.3%, or a 99.7% success rate.

Over the next six months, the team iterates, listens to customers, and delivers a ton of value. As a
result, traffic levels grow to a rate of 10,000,000 requests per year. But still, our team hasn’t grown much
and we still have just one engineer on call at any given point in time meaning our error triage capacity
remains fixed at 3000 errors per year. In order to keep up with triaging the error stream at the increased
levels of traffic, the team must improve the error rate from 0.3% to 0.03%. And hopefully, this team
continues to be successful, increasing API traffic superlinearly in years to come.

If you want to be able to read every error message, then the error rate has to come down as API traffic
increases.

Why Should You Care?

Pulumi aspires to be the most reliable infrastructure that our customers interact with, and the benefits
towards that end are reason enough for us. But this process is by no means free, and there is always an
opportunity cost.

However, we noticed a powerful second-order effect emerge over time. The team began obsessing
over the user experience. Following this process builds a visceral understanding of how your system
behaves. You know when a new feature has a bug before the first support tickets get opened. You
know which customer workloads will require scaling investments in the next 90 days. You know what
features see heavy usage and which ones customers ignore. You’re forced to confront every wart in
your application. Slowly, your team builds a better understanding of your customers and this trickles
down into every aspect of product development. You begin to hold yourselves to higher standards.

A friend and engineer at a large-cap software company read a draft of this post and told me:

“I can’t imagine this process being set on any of the systems I work on at [redacted]. They are so prone to
500s and everybody shrugs their shoulders as if it is just commonplace.”

Apathy in place of customer obsession is not an option if you are a startup that wants to disrupt
anything.

The SRE’s Folly

Error budgets and the SRE model are haute couture. Some preach that we should never look at errors at
this level of granularity and instead use expensive tools that aggregate, categorize, and collect statistics
on errors flowing through your system. But all of this automation can actually make things worse when
you reach for it prematurely. Aggregating errors is a great way to gloss over important details early on.
Collecting fancy metrics does not matter if your users are not happy. Cutting your teeth with the tools
and processes that make sense for your level of scale is the only way to build a high-performance
culture. Skipping straight to step 100 does not always help.

Admittedly, this process does not work for Google-level scale. But it works a lot longer than you might
imagine. Pulumi manages a meaningful percentage of the resources deployed across all clouds. I asked
large-cap software engineer about traffic levels and believe it or not, it is in the same order of
magnitude as what we see at Pulumi.

We’re still reading every error.

cloud-engineering

Subscribe to the Pulumi Monthly Newsletter

Share this post

Subscribe

https://www.pulumi.com/blog/tag/cloud-engineering/
https://twitter.com/intent/tweet?text=Read%20Every%20Single%20Error&tw_p=tweetbutton&url=https%3a%2f%2fwww.pulumi.com%2fblog%2freducing-our-error-rate%2f
https://www.linkedin.com/sharing/share-offsite/?url=https%3a%2f%2fwww.pulumi.com%2fblog%2freducing-our-error-rate%2f
https://www.pulumi.com/pulumi-up

Get Started

Install

Documentation

Registry

Public Roadmap

Security

Enterprise

AWS

Azure

Google Cloud

Containers

Serverless

Kubernetes

About Us

Request a Demo

Contact Us

Support

Careers

Resources

Slack Archive

Case Studies

Awards & Recognitions

Brand Resources

© 2023 Pulumi

Trademark Usage

Acceptable Use Policy

Terms & Conditions

Privacy Policy

https://www.pulumi.com/docs/get-started/
https://www.pulumi.com/docs/install/
https://www.pulumi.com/docs/
https://www.pulumi.com/registry/
https://github.com/orgs/pulumi/projects/44
https://www.pulumi.com/security/
https://www.pulumi.com/enterprise/
https://www.pulumi.com/aws/
https://www.pulumi.com/azure/
https://www.pulumi.com/gcp/
https://www.pulumi.com/containers/
https://www.pulumi.com/serverless/
https://www.pulumi.com/kubernetes/
https://www.pulumi.com/about/
https://www.pulumi.com/request-a-demo/
https://www.pulumi.com/contact/
https://support.pulumi.com/
https://www.pulumi.com/careers/
https://www.pulumi.com/resources/
https://archive.pulumi.com/
https://www.pulumi.com/case-studies/
https://www.pulumi.com/awards/
https://www.pulumi.com/brand/
https://twitter.com/pulumicorp
https://slack.pulumi.com/
https://www.linkedin.com/company/pulumi/
https://www.youtube.com/channel/UC2Dhyn4Ev52YSbcpfnfP0Mw
https://github.com/pulumi/
https://www.pulumi.com/trademark/
https://www.pulumi.com/acceptable-use/
https://www.pulumi.com/terms-and-conditions/
https://www.pulumi.com/privacy/

Professional Services Agreement

https://www.pulumi.com/professional-services-agreement/

