
My 20 Year Career is Technical Debt or
Deprecated
Deprecated should be my middle name

MAY 15, 2023

5 Share

Technical debt is easily the most used buzzword these days. People say, “We are moving
fast on our MVP while minimizing technical debt!”. They mention technical debt in there
to sound cool or something.

I just laugh because everything is technical debt, eventually.

My entire career is now technical debt, or the code has been deprecated.

If you don’t believe that your entire career will also be technical debt, you might a�er you
read this article. I will walk you through how things have changed over my 20-year
career.

2

https://blog.visionarycto.com/p/my-20-year-career-is-technical-debt/comments
javascript:void(0)
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0eea7521-0a9d-4df0-80c8-ab8e1610a371_1004x524.png


My career started as a Visual Basic 6 developer. I built several di�erent apps from 1999 to
2003. I think you can say that anything in Visual Basic 6 by today’s standard is technical

debt or has been long replaced already. Long live “on error resume next!”

I spent a lot of time doing classic active server pages (ASP) development. At one time, I
was also an expert at making websites work with Internet Explorer 6 and Netscape
Navigator. It doesn’t mean much on the resume anymore!

Visual Basic, ASP, IE6, and Netscape are all long-forgotten technologies. As Strong Bad

would say back then, “delorted!”

There are a lot of programming languages that have fallen out of favor over the last 20+
years besides Visual Basic 6. Odds are if you built anything in any of these languages,
people are trying to �gure out how to rewrite it because it is hard to �nd programmers
for those languages: Perl, Delphi, Fortran, FoxPro, ColdFusion

Do apps still exist in them? Yes. Can you hire people to do it? It’s tough. In most
circumstances, those companies must modernize and retire the old apps.

In the early 2000s, people thought Adobe ColdFusion was the hot thing. Do you
remember it’s little rise to stardom?

Ruby on Rails is in jeopardy of being added to this list. It has fallen out of favor, and it is
tough to �nd developers for it. What once made it unique is now available in other

languages.

Programming languages come and go. Developers don’t want jobs learning skills that
aren’t in demand. It is always a balance of supply vs demand! Developers jump ship
quickly and always want the hot new thing on their resume.

I was “Basic” at first…

Old languages: Perl, Delphi, Fortran, FoxPro,
ColdFusion

Discover more from The Visionary CTO
Thought leadership about startup and CTO life, including

entrepreneurship, engineering leadership, product, and more

Over 2,000 subscribers

Type your email...

Continue reading

Sign in

Subscribe

https://www.youtube.com/channel/UCMkbjxvwur30YrFWw8kpSaw


Some of the �rst apps I made used ActiveX controls in Internet Explorer 6. At the time,

they were required to do printing and other very insecure hacky things. PDFs were not as
common back then, and printing from the browser was its own fun nightmare.

Java Applets were also a big thing once upon a time. They were slow, and having the
correct version of Java installed on your computer was always a mess. I’ll never forget the
nightmare of dealing with networking �rewalls that required Java applets. I don’t miss
those nightmares, and luckily it faded away.

Of course, we all remember Macromedia/Adobe Flash! At one point, it was the darling
child of the entire Internet. There were endless Flash games, and lots of so�ware was
built in Flash with ActionScript. A product called CheerpX now allows running old
Flash apps with WebAssembly.

Microso� came out with a competitor to Flash called Silverlight. It was actually a pretty

fantastic framework for C# developers. My company built some really amazing things
with Silverlight.

As we all know, Apple ended Flash and Silverlight by dropping their support in their
browsers.

Here is a screenshot of the �nance calculator we built with Silverlight at VinSolutions

over 10 years ago. Silverlight is now long gone, and they rewrote it in all JavaScript, but it
is not as cool as the old version!

What happened to ActiveX, Java Applets, Flash,
and Silverlight?

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5f601b48-e59e-4b8e-ae33-7a809e91d449_831x600.jpeg


I built a mobile app in 2004. It’s hard to remember, but the iPhone and Android didn’t
exist then. I wrote an application for Compaq PDAs for tracking inventory for car
dealers. It was written in C# for the .NET Compact Framework to run on Windows CE.

This PDA had a 1-megapixel camera. The photos were only slightly terrible as long as it
was cloudy outside to remove the glare. 😂 Boy, has technology changed! This app went

to the boneyard long ago but was cutting edge in 2005.

My first mobile app

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5f601b48-e59e-4b8e-ae33-7a809e91d449_831x600.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd825fa31-a811-4427-ba26-e2ac9f3e847b_1206x458.png


Swi� is another excellent example of how fast development tools change. As soon as

Apple released Swi�, it was hard to justify writing code in Objective C anymore. I am
sure there are some use cases where it is still needed. But Swi� is signi�cantly easier to
develop and a major evolutionary step forward.

I would argue that any apps written in Objective C are probably technical debt now.

Thank you for reading The Visionary CTO. This

post is public so feel free to share it.

A�er doing crazy in-line scripts for building web apps, I was happy to use the new
ASP.NET web forms. Their server-side controls made development signi�cantly easier.
Their goal was to make it as easy to create web apps as you could in Visual Basic 6. It
mostly worked! You could build reusable UI components server side to render to the

browser. Just like we do today in 100% JavaScript.

WebForms wasn’t perfect, but it was a considerable upgrade. It had a great run until
Ruby on Rails came around and popularized MVC (Model-View-Controller) frameworks
for developing web apps.

You better be Swift

WebForms

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd825fa31-a811-4427-ba26-e2ac9f3e847b_1206x458.png


MVC quickly deprecated all the web forms apps we ever made. Anything in web forms is
de�nitely technical debt. (Although, the same idea is making a comeback with Blazor.)

Before you knew it, every programming language supported MVC frameworks. We
switched to doing everything new in ASP.NET MVC. It was everywhere, including

Django, Laravel, Symfony, Spring, etc.

Fast forward to today, and MVC has since fallen out of fashion. Everything is now done
in React, Angular, Vue, and other frameworks.

Before we had those, we had other Javascript frameworks. At Stackify, we used Knockout,
a reasonably popular front-end framework.

Do you remember any of these frameworks? Knockout, Ember, Aurelia, Meteor,
Backbone, Handlebars

If you used any of them, I bet all that code is now considered technical debt and has
fallen out of favor. The �rst generation of front-end frameworks lost to React and
Angular.

In 2015 Angular was created by Google and burst onto the scene. It quickly became the

most popular front-end framework.

Then in 2016, Angular went through a major upgrade and was not backward compatible.

Guess what that means? Anything in the original version is now technical debt. I have
projects at my company in the old version of Angular that is a major technical debt we
must upgrade.

MVC is king! (for a while)

Angular JS

The old dirty SOAP & WCF

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://stackify.com/


Before REST APIs and JSON became the de facto standard, another option was SOAP
which stands for simple object access protocol. It made it easy to call web services and
automatically code-generate proxy classes to correctly call the services. It was primarily

used by the Windows Communication Framework (WCF) over XML.

It worked awesome… until it didn’t. One of the worst projects of my career involved
�guring out how to use security certi�cates between my company and another vendor
over WCF and SOAP. The promise of SOAP and WCF was amazing, but it was a
nightmare to maintain over time.

SOAP and WCF are two things I don’t miss. Microso� decided to no longer support
WCF in .NET Core. Things like REST, gRPC, and GraphQL are now preferred. Although,
a community project eventually made CoreWCF to keep it going.

Over time, the types of technology we have used to call web services have changed. Older
ways still work, but most people would probably prefer to retire them.

Another common problem is major programming language version changes. Be it Ruby,

PHP, .NET, or others. They commonly require a bunch of code changes or even rewrites.

When .NET Core came out, it was the newer, lighter, faster version of .NET designed to
run on Linux. Basic C# code is pretty easily ported over, but nobody uses just basic code
for a real-world app.

However, in complex enterprise apps, there are many potential issues when navigating
the upgrade path. That becomes a major technical debt that has to be �gured out.

Otherwise, you eventually get stuck on an ancient version.

Those major version updates eventually become big technical debt projects.

One of the biggest challenges we had at Stackify was getting stuck on an old version of
Elasticsearch.

Major language versions

Stuck on an old external dependency

https://en.wikipedia.org/wiki/SOAP
https://devblogs.microsoft.com/dotnet/corewcf-v1-released/


At one point, they made some signi�cant changes to how it worked that were not entirely
backward compatible. We used it very heavily, and all the work to upgrade became a
massive amount of technical debt and upgrade project.

We kept kicking it down the curb over and over and eventually got way behind. This is
another example of real technical debt projects that can plague companies.

At Stackify, we built our own tracing/pro�ling libraries for 6 programming languages. It
was an incredible amount of work to do that.

Well, now OpenTelemetry has since come along and rendered all that work useless.

Why manage your own when you can use the open-source industry standard? Stackify is

slowly working to eliminate the .NET pro�ler I helped build.

Over time, you can see how almost everything you create gets scrapped and replaced for
various reasons or is now based on old technology.

Several apps that I built early in my career were terminated because the companies were
acquired and decided to use totally di�erent technology.

Most so�ware has a limited lifespan that is shorter than you think. All code eventually

becomes a technical debt that everyone wants to rewrite in a more modern way, or the
business needs dramatically change.

Granted, in the corporate world, it is more likely to have internal apps that seem to stay
around forever. Something like a railroad or major bank has been using the same
mainframe-based so�ware for 40 years.

I predict WebAssembly will eventually overtake how front-end development is today,
and a whole new world will evolve.

Open source alternative retired my code

All code rots or gets replaced

https://stackify.com/
https://opentelemetry.io/


People are always worried about minimizing technical debt when doing new projects. I
understand that. There is a balance between getting things to work and trying to make

them perfect.

However, nothing is technical debt because it isn’t perfect. There is no such thing as
perfect. Over time what was perfect today won’t be perfect in the future. Learn to live
with less than perfect.

The other side of technical debt is how everything slowly rots away over time. It either

has signi�cant issues with upgrading to the latest versions, or the technology ultimately
falls out of favor because of newer ways to do things. Good luck hiring people for old
tech stacks.

Everything eventually becomes tech debt, or the projects get sunsetted. If you are lucky,
your code survives long enough to be technical debt to someone else.

Given enough time, all your code will get deleted. �

The reality of technical debt

Strong Bad DeletedStrong Bad Deleted

https://www.youtube.com/watch?v=i6K_Vi4qCtY


The Visionary CTO is a reader-supported

publication. To receive new posts and support

my work, consider becoming a free or paid

subscriber.

5 Comments

4 more comments…

Type your email… Subscribe

Write a comment…

4 replies by Matt Watson and others

Writes 

REPLY

John Crickett Coding Challenges 6 hr ago

People are still building systems in Delphi and PERL. Delphi actually had a new release just

a couple of months ago.

LIKE (2)

© 2023 Matt Watson · Privacy · Terms · Collection notice

https://blog.visionarycto.com/p/my-20-year-career-is-technical-debt/comments
https://blog.visionarycto.com/p/my-20-year-career-is-technical-debt/comment/16138512
https://substack.com/profile/27801024-john-crickett
https://codingchallenges.substack.com/?utm_source=substack&utm_medium=web&utm_content=comment_metadata
https://substack.com/profile/27801024-john-crickett
https://blog.visionarycto.com/p/my-20-year-career-is-technical-debt/comment/16138512
javascript:void(0)
https://blog.visionarycto.com/privacy
https://blog.visionarycto.com/tos
https://substack.com/ccpa#personal-data-collected


Substack is the home for great writing

https://substack.com/

