
March 29, 2020

BOOTING LINUX OVER HTTP
—

A couple years ago, one of my friends gave me a big pile of little Dell FX160 thin clients, which are cute little computers

which have low power Atom 230 processors in them with the ability to support 3GB of RAM. Being thin clients means

they were originally meant to be diskless nodes that could boot a remote desktop application to essentially act as

remote graphical consoles to applications running on a bee�er server somewhere else.

T hat being said, they're great as low power Linux boxes, and I've been deploying them in various projects over the years

when I need a Linux box somewhere but want/need something a little more substantial than a Raspberry Pi.

THE LIFE OF KENNETH

https://blog.thelifeofkenneth.com/2020/03/booting-linux-over-http.html
https://1.bp.blogspot.com/-CowMXPeT7xE/XnREB0Ke7bI/AAAAAAABAck/Bioql8WclHMprdTiaqYVvlc9ylttJxnGACLcBGAsYHQ/s1600/small.IMG_20200319_204908.jpg
https://blog.thelifeofkenneth.com/
https://blog.thelifeofkenneth.com/

T he one big problem with them is that they didn't come with the 2.5" hard disk bracket, so I needed to source those

drive sled kits on eBay to add more storage than the 1GB embedded SATA drive they all came with. Which is nominally

�ne; I bought a few of the kits for about $10 a piece, and for that to be the only expense to be able to deploy a 1T B 2.5"

drive somewhere has been handy a few times.

But it always left me thinking about what I could do with the original 1GB drive in these things. Obviously, with enough

effort and hand wringing, you can get Linux installed on a 1G partition, but that feels like it's been done before, and

these are thin clients! T hey're meant to depend on the network to boot!

Fast forward to this year, and thanks to one of their network engineers hearing my interview for On the Metal, I've been

working with Gandi.net to help deploy one of their DNS anycast nodes in Fremont as part of the Fremont Cabal Internet

Exchange. T he thing is, how they designed their anycast DNS nodes is awesome! T hey have a 10,000 foot view blog

post about it, but the tl;dr is that they don't deploy their remote DNS nodes with an OS image on them. Each server gets

deployed with a USB key plugged into them with a custom build of iPXE, which gives the server enough smarts to, over

authenticated HT T PS, download the OS image for their central servers and run the service entirely from RAM.

Operationally, this is awesome because it means that when they want to update software on one of their anycast

nodes, they can build the new image in advance on their provisioning server centrally, and just tell the server to reboot.

When it reboots, it automatically downloads the new image from the provisioning servers, and you're up to date. If

something goes terribly wrong and the OS on a node becomes unresponsive? Open a remote hands ticket with the data

center "please power cycle our server" and the iPXE ROM will once again download a fresh copy of the OS image to run

in RAM.

Granted, they've got all sorts of awesome extra engineering involved in their system; cryptographic authentication of

their boot images, local SSDs so while the OS is stateless, their nodes don't need to perform an entire DNS zone transfer

from scratch every time it reboots, etc, etc. Which is all well and good, but this iPXE netbooting an entire OS image over

the wide Internet using HT T P is just the sort of kind-of-silly, kind-of-awesome sort of project I've been looking to do

with these thin clients I've got sitting around in my apartment.

Understanding The Boot Process

https://1.bp.blogspot.com/-Da2arDk2rd8/XnRECR7QO_I/AAAAAAABAc0/wklKUMIOiE8qJnACyi6qqXNJ5ZTWWbQnQCEwYBhgL/s1600/small.IMG_20200319_204729.jpg
https://oxide.computer/podcast/on-the-metal-6-kenneth-finnegan/
https://www.gandi.net/
https://fcix.net/
https://news.gandi.net/en/2019/03/booting-an-anycast-dns-network/
https://ipxe.org/

T his left me with a few problems:

1. T he Gandi blog post regarding their DNS system was a 10,000 foot view conceptual overview, so they rightfully-

so glossed over some of the technical speci�cs that weren't important to their blog post's message but really

important for actually making it work.

2. I have been blissfully ignorant up until now of most of the mechanics involved with Linux booting in the gap

between "T he BIOS runs the bootloader" and "T he Linux kernel is running with your Init server running as PID 1

and your fstab mounted"

3. I'm trying to do something exceedingly weird here, where there are no additional �le systems to mount while the

system is booting. T here's plenty of guides available on booting Linux with an NFS or iSCSI root �le system, but

I'm looking at even less than that; I want the entire system just running from local RAM.

So before talking about what I ended up with, let's talk about the journey and what I had to learn about the boot

process on Linux.

On a typical traditional Linux host, when you power it on, the local BIOS has enough smarts to �nd local disks with boot

sectors, and read that �rst sector from the disk and execute it in RAM. T hat small piece of machine code then has

enough smarts to load a more sophisticated bootloader like GRUB from somewhere close on the disk, which then has

enough smarts to do more complicated things like load a Linux kernel and init RAM disk to boot Linux, or give the user a

user interface to select which Linux kernel to boot, etc. One of the reasons why many Unix systems had a separate

/boot partition was because this chainloader between the BIOS and the full running kernel couldn't mount more

sophisticated �le systems so needed a smaller and simpler partition for just the bare minimum boot �les needed to get

the kernel running.

T he kernel �le plus init RAM disk (often called initrd) are the two �les Linux really requires to boot, and the part where

my understanding was lacking. Granted, my understanding is still pretty lacking, but the main insight I gained was that

the initrd �le is a packed SVR4 archive of the bare minimum of �les that the Linux kernel needs to then go and mount the

real root �le system and switch to it to have a fully running system. T hese SVR4 archives can be created using the "cpio"

command as the "newc" �le format, and the Linux kernel is smart enough to decompress it using gzip before mounting

the archive, so we can gzip the initrd �le to save bandwidth when ultimately booting the system.

(Related aside; there's many different pathways from the BIOS to having the kernel and initrd �les in RAM. One of the

most popular "net booting" processes, which I have used quite a bit in the past, is PXE booting, where the BIOS boot

ROM in the network card itself has juuuust enough smarts to send out a DHCP request for a lease which includes a

T FT P server and �le path for a �le on that T FT P server as DHCP options, and the PXE ROM downloads this �le and runs

it. T his �le is usually pxelinux.0, which I think is another chainloader which then downloads the kernel and initrd �les from

the same T FT P server, and you're off to the races.)

T he missing piece for me inside the initrd �le is that the kernel immediately runs a shell script in the root of the

�lesystem named "/init". T his shell script is what switches the root �le system over to whatever you speci�ed in your

/etc/fstab �le, and ultimately at the very end of the /init script is where it "exec /sbin/init" to replace itself with the

regular init daemon which you're used to being PID 1 and being the parent of every other process on the system.

https://en.wikipedia.org/wiki/Init
https://en.wikipedia.org/wiki/Init

I had never seen this /init script before, which is understandable because it's normally not included in your actual "/" root

�le system! It's only included in the initrd archive's "/" �le system (which you can actually unpack yourself using gunzip

and cpio), and disappears when it remounts the actual root and exec's /sbin/init... So since I want to run Linux entirely

from RAM, "all" I need to do is �gure out how to create my own initrd �le, generate one that is not a bare minimum to

mount another �le system but everything I need to run my application in Linux, and �gure out a simpler /init script to

package with it which doesn't need to mount any local volumes but only needs to mount all the required virtual �le

systems (like /proc, /sys, and /dev) and exec the real /sbin/init to start the rest of the system.

Generating My Own Initrd File

So the �rst step in this puzzle for me is �guring out how to generate my own initrd �le including the ENT IRE contents of

a Linux install instead of just the bare minimum to get it started. And to generate that initrd archive, I �rst need to

create a minimal root �le system that I can con�gure to do what I want to then pack as the initrd �le we'll be booting.

T hankfully, Debian has some really good documentation on using their debootstrap tool to start with an empty folder on

your computer and end up with a minimal system. T he �rst section of that documentation talks about partitioning the

disk you're installing Debian on, but we just need the �le system, so I skipped that part and went straight to running

debootstrap in an empty directory.

$ sudo debootstrap buster /home/kenneth/tmp/rootfs http://ftp.us.debian.org/debian/

Remember that there's plenty of Debian mirrors, so feel free to pick a closer one off their list.

Once debootstrap is done building the basic image, from a terminal we can jump into the new Linux system using chroot,

which doesn't really boot this system, but jump the terminal into it like it was the root of the currently running system,

so you can interact with it like it's running. T his lets us edit con�g �les like /etc/network/interfaces, apt install needed

packages, etc etc. Pretty much just following the rest of the Debian debootstrap guide and then also doing the

con�guration work needed to set up whatever the system should actually be doing. (things like setting a root password,

installing ssh, con�guring network interfaces, etc etc)

$ LANG=C.UTF-8 sudo chroot /home/kenneth/tmp/rootfs /bin/bash

Since we're not installing this system on an actual disk, we don't need to worry about installing the GRUB or LILO

bootloader like the guide says, but I did install the Linux kernel package since it was the easiest way to grab a built Linux

kernel to pair with the �nal initrd �le we're creating. Apt install linux-image-amd64 and copy that vmlinuz �le out of the

.../boot/ directory in the new �lesystem to somewhere handy.

T he next step is to place the much simpler /init script in this new �le system, so when the kernel loads this entire folder

as its initrd we don't go off and try and mount other �le systems or anything. T his is the part where my friend at

Gandi.net was SUPER helpful, since trying to �gure out each of the various virtual �le systems that still need to be

mounted on my own only yielded me a lot of kernel panics.

https://www.debian.org/releases/stable/i386/apds03.en.html
https://www.debian.org/mirror/list

view raw

So huge thanks to Arthur for giving me this chunk of shell code! Copy it into the root of the freshly debootstrapped

system and mark it executable (chmod +x)

Source for init:

init hosted with ❤ by GitHub

1 #!/bin/sh

2 # Kenneth Finnegan, 2020

3 # https://blog.thelifeofkenneth.com/

4 # Huge thanks to Gandi.net for most of this code

5

6 set -x

7 set -e

8

9 # Create the mount points for all of the virtual file systems which don't

10 # actually map to disks, but are views into the kernel

11 [-d /dev] || mkdir -m 0755 /dev

12 [-d /root] || mkdir -m 0700 /root

13 [-d /sys] || mkdir /sys

14 [-d /proc] || mkdir /proc

15 [-d /tmp] || mkdir /tmp

16 mkdir -p /var/lock || true

17

18 # Mount the required virtual file systems

19 mount -t sysfs -o nodev,noexec,nosuid sysfs /sys

20 mount -t proc -o nodev,noexec,nosuid proc /proc

21

22 tmpfs_size=10240k

23 if ! mount -t devtmpfs -o size=$tmpfs_size,mode=0755 udev /dev; then

24 echo "W: devtmpfs not available, falling back to tmpfs for /dev"

25 mount -t tmpfs -o size=$tmpfs_size,mode=0755 udev /dev

26 [-e /dev/console] || mknod -m 0600 /dev/console c 5 1

27 [-e /dev/null] || mknod /dev/null c 1 3

28 fi

29 unset tmpfs_size

30

31 mkdir /dev/pts

32 mount -t devpts -o noexec,nosuid,gid=5,mode=0620 devpts /dev/pts || true

33 mount -t tmpfs -o "nosuid,size=20%,mode=0755" tmpfs /run

34

35 # Set dmesg to private if you want

36 echo 1 > /proc/sys/kernel/dmesg_restrict

37

38 # Replace ourselves with the actual init daemon which will handle starting every other daemon

39 exec /sbin/init

https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb/raw/40ea9bd172a442d71c7016c88700faac76571440/init
https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb
https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb#file-init
https://github.com/

At this point, we're ready to pack this �lesystem into an initrd archive and give it a shot. To create the archive, I followed

this guide, which boils down to passing cpio a list of all the �le names, and then piping the output of cpio to gzip to

compress the image.

$ cd /home/kenneth/tmp/rootfs

$ sudo find . | sudo cpio -H newc -o | gzip -9 -n >~/www/initrd

At this point, you should have this initrd �le which is a few hundred MB compressed, and the vmlinuz �le (vmlinuz being a

compressed version of the usual vmlinux kernel �le!) which you grabbed out of the /boot directory, and that * should* be

everything you need for booting Linux on its own. Place both of those �les on a handy HT T P server to be downloaded

by the client later.

Netbooting This Linux Image

Given the initrd and kernel images, the next step is to somehow get the target system to actually load and boot these

�les. Aside from what I'm talking about here of using HT T P, you can use any of the more traditional booting methods like

putting these �les on some local storage media and installing GRUB, or using the PXE boot ROM in your computer's

network interface to download these �les from a T FT P server, etc.

T FT P would probably be pretty cute since many computers can support it stock, but that depends on your target

system being on a subnet with a DHCP server that can hand out the right DHCP options to tell it where to look for the

T FT P server. I didn't want to depend on DHCP, and I wanted to use HT T P, so I instead opted to use iPXE, which is a

much more sophisticated boot ROM than the typical PXE ROMs you get.

It is possible to directly install iPXE on the �rmware �ash of NICs, but that's often challenging and hardware speci�c,

and a good point that Arthur pointed out was that since they boot iPXE from USB, if for some reason they need to swap

the iPXE image remotely, it's * MUCH* easier to mail a USB �ash drive and ask them to replace it than to try and walk

someone else through how to re�ash the �rmware on a NIC over the phone... I'm not going to be using a USB drive,

since these thin clients happen to have convenient 1GB SSDs in them already, but it's the same image. Instead of dd'ing

the ipxe.usb image onto a �ash drive, I just temporarily booted Linux on the thin clients and dd'ed the ipxe ROM onto

the internal /dev/sda.

T he stock iPXE image is pretty generic, and like a normal PXE ROM sends out a DHCP request for a local network boot

image to download. T his isn't what we want here, so we're de�nitely going to need to build our own iPXE binary in the

end, but I started with the stock ROM because it allows you to hit control-B during the boot process and interactively

poke at the iPXE command line, and manually step through the entire process of con�guring the network, downloading

the Linux kernel, downloading the initrd �le, and booting them.

So before building my own custom ROM, I burned iPXE onto a USB �ash drive and poked at the iPXE console with the

following commands on my apartment network:

https://www.kernel.org/doc/html/latest/admin-guide/initrd.html
https://ipxe.org/

view raw

dhcp

kernel http://example.com/vmlinux1

initrd http://example.com/init1

boot

And that was enough to start iterating on my initrd �le to get it to what I wanted. Since I was still doing this in my

apartment which has a DHCP server, I was able to ask iPXE to automatically con�gure the network with the "dhcp"

command, then download a kernel and initrd �le, and then �nally boot with the two �les it just downloaded.

So at this point, I was able to boot the built Linux image interactively from the iPXE console, and had a fully running Linux

system in RAM, which was kind of awesome, but I wanted to fully automate the iPXE booting process, which means I

need to build a custom image with an embedded "iPXE script" which is essentially just a list of commands for iPXE to run

to con�gure the network interface, download the boot �les, and boot.

iPXE Boot Script:

ipxe.script hosted with ❤ by GitHub

So given that script, we follow the iPXE instructions to download their source using git, install their build dependencies

(which I apparently already had on my system from past projects, so good luck...), and the key step is that when

performing the �nal build, we pass make the path to our iPXE boot script �le to embed it in the image as what to run.

$ cd ~/src/ipxe/src

$ make EMBEDDED_IMAGE=./bootscript bin/ipxe.usb

And at this point in the ipxe/src/bin folder is the built image of ipxe.usb which has our custom boot script embedded in it!

Since the internal SATA disk is close enough to a USB drive, from a booting perspective, that's the variant of ROM I'm

using.

1 #!gpxe

2 ifopen net0

3 set net0/ip 192.0.2.100

4 set net0/netmask 255.255.255.0

5 set net0/gateway 192.0.2.1

6 set net0/dns 192.0.2.1

7

8 echo Configuring network...

9 sleep 3

10

11 kernel http://example.com/vmlinux1

12 initrd http://example.com/init1

13

14 echo And away we go!

15 boot

https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb/raw/40ea9bd172a442d71c7016c88700faac76571440/ipxe.script
https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb
https://gist.github.com/PhirePhly/3856815f0a490c7d19eceffd945d5bfb#file-ipxe-script
https://github.com/
https://ipxe.org/download

So given this custom iPXE ROM, I manually booted a live Linux image on the thin client, used dd to write the ROM to

/dev/sda which is the internal 1G SSD, and the box is ready to go!

Now, when I power on the box, the BIOS sees that the internal 1G SSD is bootable, so it boots that, which is iPXE, which

runs the embedded script we handed it, which con�gures the network interface, downloads our custom initrd �le and

the Linux kernel from my HT T P server, and boots those. Linux then unpacks our initrd �le, and runs the /init script

embedded in that, which just mounts the virtual �le systems like /proc/, /sys/, and /dev, and then doesn't try and mount

any other local �le system, and �nally our /init/ script exec's /sbin/init, which in the case of Debian happens to be

systemd, and we're got a fully running system in RAM!

Video of generally what that looks like:

Booting Linux From RAM!Booting Linux From RAM!

So once again, thanks to Arthur from Gandi.net for the original idea and gentle nudges in the right direction when I got

stuck.

Of course, the next thing to do is start playing "disk space golf" with the OS image to see how small I can make the initrd

�le, since the smaller the initrd �le, the more RAM that is left over for running the application in the end! And actually

doing something useful with one of these boxes running iPXE... a topic for another blog post.

Update: One thing to note is that this documentation is for the minimum viable "booting Linux over HT T P". iPXE does

support crypto such as HT T PS, client T LS certi�cates for client authentication, and code signing. More details can be

found in their documentation.

Share

https://www.youtube.com/watch?v=7ppdut16aYA
https://ipxe.org/crypto
https://www.youtube.com/watch?v=7ppdut16aYA

POPULAR POST S

CREATING AN AUTONOMOUS SYSTEM FOR FUN AND PROFIT

No vember 15, 2017

https://blog.thelifeofkenneth.com/2017/11/creating-autonomous-system-for-fun-and.html
https://blog.thelifeofkenneth.com/2017/11/creating-autonomous-system-for-fun-and.html
https://blog.thelifeofkenneth.com/2017/11/creating-autonomous-system-for-fun-and.html

Kenneth Finnegan

VISIT PROFILE

Archive

May 05, 2021

UNLOCKING THIRD PARTY TRANSCEIVERS ON OLDER ARISTA
SWITCHES

Po wered by Blo gger

Share

Share

https://draft.blogger.com/profile/09597995268728038585
https://draft.blogger.com/profile/09597995268728038585
https://draft.blogger.com/profile/09597995268728038585
https://blog.thelifeofkenneth.com/2021/05/unlocking-third-party-transceivers-on.html
https://blog.thelifeofkenneth.com/2021/05/unlocking-third-party-transceivers-on.html
https://draft.blogger.com/

Project

Management

Software

Easily Search & Compare

Project Management Software

Workforce Management

See More

https://googleads.g.doubleclick.net/aclk?sa=l&ai=CSz26iolbZLLRI9qCnboPxNSriA_C9oevcLP5vIndEM_7kOPXAhABIIHk2g5gyQagAZix-IkpyAEBqQK4Sb-1M2eyPqgDAaoEmAJP0KmDzpRsrQQSMpqPFczKnI6k7ZynxldRwdCl6b7WTIkBHFCZzTzoslEgVhHjtPUDiejUfjXC123hoqFOpc_HsJb67tvjmYgBkiZmAeMx5O0tlern4b4MdlbQMSoyYo-EN1B2HehXhmArLKKNT2NhllPqQsWp4ewuayrmorJ2fpiiEwdBP7iKeLWeeru0PkEP-lGJZogvm_cOP_G3ppuPbDGzbA-s0-ZAJyYY4bdl1qcR0f-pakMZlikI5zPpztFG7p3hbS7tMTy494QoQWoVUXYvJsT10mP6EcDgJtrKjIPSRsAZacEi_A9iYZeTe2sCBWZaXs9FZDeUZ1X6_k1TuyQ1jHLeTRv8FzUGOiSYsEPTOnoUK5z4wAS2tt_PmwSAB5jpyOkDqAeOzhuoB5PYG6gH7paxAqgH_p6xAqgHpKOxAqgH1ckbqAemvhuoB5oGqAfz0RuoB5bYG6gHqpuxAqgHg62xAqgH_56xAqgH35-xAtgHAdIIFAiAYRABGB8yAooCOgKAQEi9_cE6sQlPvZctbMrs8oAKAZgLAcgLAbgMAdgTDIgUBdAVAZgWAfgWAYAXAQ&ae=1&num=1&cid=CAQSGwBygQiDzv9yRnVC79xO8poTHHXkhrVc_wlOmBgB&sig=AOD64_0KuDI8pVseeyTwvlLm5Ew56-RDfA&client=ca-pub-9471196324561751&rf=1&nb=19&adurl=https://us.searchel.com/dsr%3Fq%3Dthe%2520best%2520workforce%2520managment%2520software%26asid%3Dse_ch1305%26de%3Dc%26sclid%3D0-23827%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE%26rac%3Dthe%2520best%2520workforce%2520managment%2520software%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE
https://googleads.g.doubleclick.net/aclk?sa=l&ai=CSz26iolbZLLRI9qCnboPxNSriA_C9oevcLP5vIndEM_7kOPXAhABIIHk2g5gyQagAZix-IkpyAEBqQK4Sb-1M2eyPqgDAaoEmAJP0KmDzpRsrQQSMpqPFczKnI6k7ZynxldRwdCl6b7WTIkBHFCZzTzoslEgVhHjtPUDiejUfjXC123hoqFOpc_HsJb67tvjmYgBkiZmAeMx5O0tlern4b4MdlbQMSoyYo-EN1B2HehXhmArLKKNT2NhllPqQsWp4ewuayrmorJ2fpiiEwdBP7iKeLWeeru0PkEP-lGJZogvm_cOP_G3ppuPbDGzbA-s0-ZAJyYY4bdl1qcR0f-pakMZlikI5zPpztFG7p3hbS7tMTy494QoQWoVUXYvJsT10mP6EcDgJtrKjIPSRsAZacEi_A9iYZeTe2sCBWZaXs9FZDeUZ1X6_k1TuyQ1jHLeTRv8FzUGOiSYsEPTOnoUK5z4wAS2tt_PmwSAB5jpyOkDqAeOzhuoB5PYG6gH7paxAqgH_p6xAqgHpKOxAqgH1ckbqAemvhuoB5oGqAfz0RuoB5bYG6gHqpuxAqgHg62xAqgH_56xAqgH35-xAtgHAdIIFAiAYRABGB8yAooCOgKAQEi9_cE6sQlPvZctbMrs8oAKAZgLAcgLAbgMAdgTDIgUBdAVAZgWAfgWAYAXAQ&ae=1&num=1&cid=CAQSGwBygQiDzv9yRnVC79xO8poTHHXkhrVc_wlOmBgB&sig=AOD64_0KuDI8pVseeyTwvlLm5Ew56-RDfA&client=ca-pub-9471196324561751&rf=1&nb=0&adurl=https://us.searchel.com/dsr%3Fq%3Dthe%2520best%2520workforce%2520managment%2520software%26asid%3Dse_ch1305%26de%3Dc%26sclid%3D0-23827%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE%26rac%3Dthe%2520best%2520workforce%2520managment%2520software%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE
https://googleads.g.doubleclick.net/aclk?sa=l&ai=CSz26iolbZLLRI9qCnboPxNSriA_C9oevcLP5vIndEM_7kOPXAhABIIHk2g5gyQagAZix-IkpyAEBqQK4Sb-1M2eyPqgDAaoEmAJP0KmDzpRsrQQSMpqPFczKnI6k7ZynxldRwdCl6b7WTIkBHFCZzTzoslEgVhHjtPUDiejUfjXC123hoqFOpc_HsJb67tvjmYgBkiZmAeMx5O0tlern4b4MdlbQMSoyYo-EN1B2HehXhmArLKKNT2NhllPqQsWp4ewuayrmorJ2fpiiEwdBP7iKeLWeeru0PkEP-lGJZogvm_cOP_G3ppuPbDGzbA-s0-ZAJyYY4bdl1qcR0f-pakMZlikI5zPpztFG7p3hbS7tMTy494QoQWoVUXYvJsT10mP6EcDgJtrKjIPSRsAZacEi_A9iYZeTe2sCBWZaXs9FZDeUZ1X6_k1TuyQ1jHLeTRv8FzUGOiSYsEPTOnoUK5z4wAS2tt_PmwSAB5jpyOkDqAeOzhuoB5PYG6gH7paxAqgH_p6xAqgHpKOxAqgH1ckbqAemvhuoB5oGqAfz0RuoB5bYG6gHqpuxAqgHg62xAqgH_56xAqgH35-xAtgHAdIIFAiAYRABGB8yAooCOgKAQEi9_cE6sQlPvZctbMrs8oAKAZgLAcgLAbgMAdgTDIgUBdAVAZgWAfgWAYAXAQ&ae=1&num=1&cid=CAQSGwBygQiDzv9yRnVC79xO8poTHHXkhrVc_wlOmBgB&sig=AOD64_0KuDI8pVseeyTwvlLm5Ew56-RDfA&client=ca-pub-9471196324561751&rf=1&nb=7&adurl=https://us.searchel.com/dsr%3Fq%3Dthe%2520best%2520workforce%2520managment%2520software%26asid%3Dse_ch1305%26de%3Dc%26sclid%3D0-23827%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE%26rac%3Dthe%2520best%2520workforce%2520managment%2520software%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE
https://googleads.g.doubleclick.net/aclk?sa=l&ai=CSz26iolbZLLRI9qCnboPxNSriA_C9oevcLP5vIndEM_7kOPXAhABIIHk2g5gyQagAZix-IkpyAEBqQK4Sb-1M2eyPqgDAaoEmAJP0KmDzpRsrQQSMpqPFczKnI6k7ZynxldRwdCl6b7WTIkBHFCZzTzoslEgVhHjtPUDiejUfjXC123hoqFOpc_HsJb67tvjmYgBkiZmAeMx5O0tlern4b4MdlbQMSoyYo-EN1B2HehXhmArLKKNT2NhllPqQsWp4ewuayrmorJ2fpiiEwdBP7iKeLWeeru0PkEP-lGJZogvm_cOP_G3ppuPbDGzbA-s0-ZAJyYY4bdl1qcR0f-pakMZlikI5zPpztFG7p3hbS7tMTy494QoQWoVUXYvJsT10mP6EcDgJtrKjIPSRsAZacEi_A9iYZeTe2sCBWZaXs9FZDeUZ1X6_k1TuyQ1jHLeTRv8FzUGOiSYsEPTOnoUK5z4wAS2tt_PmwSAB5jpyOkDqAeOzhuoB5PYG6gH7paxAqgH_p6xAqgHpKOxAqgH1ckbqAemvhuoB5oGqAfz0RuoB5bYG6gHqpuxAqgHg62xAqgH_56xAqgH35-xAtgHAdIIFAiAYRABGB8yAooCOgKAQEi9_cE6sQlPvZctbMrs8oAKAZgLAcgLAbgMAdgTDIgUBdAVAZgWAfgWAYAXAQ&ae=1&num=1&cid=CAQSGwBygQiDzv9yRnVC79xO8poTHHXkhrVc_wlOmBgB&sig=AOD64_0KuDI8pVseeyTwvlLm5Ew56-RDfA&client=ca-pub-9471196324561751&rf=1&nb=1&adurl=https://us.searchel.com/dsr%3Fq%3Dthe%2520best%2520workforce%2520managment%2520software%26asid%3Dse_ch1305%26de%3Dc%26sclid%3D0-23827%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE%26rac%3Dthe%2520best%2520workforce%2520managment%2520software%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE
https://googleads.g.doubleclick.net/aclk?sa=l&ai=CSz26iolbZLLRI9qCnboPxNSriA_C9oevcLP5vIndEM_7kOPXAhABIIHk2g5gyQagAZix-IkpyAEBqQK4Sb-1M2eyPqgDAaoEmAJP0KmDzpRsrQQSMpqPFczKnI6k7ZynxldRwdCl6b7WTIkBHFCZzTzoslEgVhHjtPUDiejUfjXC123hoqFOpc_HsJb67tvjmYgBkiZmAeMx5O0tlern4b4MdlbQMSoyYo-EN1B2HehXhmArLKKNT2NhllPqQsWp4ewuayrmorJ2fpiiEwdBP7iKeLWeeru0PkEP-lGJZogvm_cOP_G3ppuPbDGzbA-s0-ZAJyYY4bdl1qcR0f-pakMZlikI5zPpztFG7p3hbS7tMTy494QoQWoVUXYvJsT10mP6EcDgJtrKjIPSRsAZacEi_A9iYZeTe2sCBWZaXs9FZDeUZ1X6_k1TuyQ1jHLeTRv8FzUGOiSYsEPTOnoUK5z4wAS2tt_PmwSAB5jpyOkDqAeOzhuoB5PYG6gH7paxAqgH_p6xAqgHpKOxAqgH1ckbqAemvhuoB5oGqAfz0RuoB5bYG6gHqpuxAqgHg62xAqgH_56xAqgH35-xAtgHAdIIFAiAYRABGB8yAooCOgKAQEi9_cE6sQlPvZctbMrs8oAKAZgLAcgLAbgMAdgTDIgUBdAVAZgWAfgWAYAXAQ&ae=1&num=1&cid=CAQSGwBygQiDzv9yRnVC79xO8poTHHXkhrVc_wlOmBgB&sig=AOD64_0KuDI8pVseeyTwvlLm5Ew56-RDfA&client=ca-pub-9471196324561751&rf=1&nb=8&adurl=https://us.searchel.com/dsr%3Fq%3Dthe%2520best%2520workforce%2520managment%2520software%26asid%3Dse_ch1305%26de%3Dc%26sclid%3D0-23827%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE%26rac%3Dthe%2520best%2520workforce%2520managment%2520software%26gclid%3DEAIaIQobChMIsr7b-9vq_gIVWkFHAR1E6grxEAEYASAAEgJOy_D_BwE

