
Written by Marco Slot

May 5, 2023

What’s new in Citus 11.3 & PostgresWhat’s new in Citus 11.3 & PostgresWhat’s new in Citus 11.3 & Postgres
for multi-tenant SaaS workloadsfor multi-tenant SaaS workloadsfor multi-tenant SaaS workloads

Citus enables several different PostgreSQL use cases, but one of the most popular ones is

to build scalable multi-tenant software as a service (SaaS) applications. The most common

way to build a multi-tenant application on Citus is to distribute all your Postgres tables

by a “tenant ID” column. That way rows are (hash-)distributed across nodes, while rows

with the same tenant ID value are co-located on the same node for fast local joins,

transactions, and foreign keys.

For those of you who build SaaS apps, one question many of you have is how active your

tenants are. More specifically: What are your busiest tenants? How many queries is your

application doing on behalf of your tenants, and how much CPU do those queries use?

The new 11.3 release to the open source Citus database extension gives you tenant

monitoring—with instant visibility into your top tenants using the new

citus_stat_tenants feature, which shows query counts and CPU usage over a

configurable time period.

Citus 11.3 also makes many other improvements, some of which lay the groundwork for

future multi-tenant SaaS capabilities too! Let’s dive in to explore these new 11.3 features:

Tenant monitoring with citus_stat_tenants

More reliable metadata synchronization for very large numbers of tables

Parallel shard rebalancing across co-location groups

MERGE support for co-located distributed tables

Logical decoding (aka CDC, in preview) for Citus tables

Details in the Release Notes: If you want to know the full details of the changes in Citus

11.3, check out the 11.3 Updates page for the detailed release notes.

Demos in the Release Party Livestream: Mark your calendar for the Release Party if you

want to see live demos of some of the new Citus 11.3 capabilities. The livestream of the

Citus 11.3 Release Party will include 3 live engineering demos and is scheduled for

Monday May 15 @ 9:00am PDT = 12noon EDT = 6:00pm CEST.

Join us for the Citus 11.3 Release Party livestream on May 15—with demos + Q&A! 🎦

 8,302

https://www.citusdata.com/blog/authors/marco-slot/
https://docs.citusdata.com/en/stable/get_started/tutorial_multi_tenant.html
https://github.com/citusdata/citus
https://www.citusdata.com/updates/v11-3/
https://www.addevent.com/event/Dt16932785
https://www.youtube.com/live/ihgr_QEX6IU
https://www.youtube.com/live/ihgr_QEX6IU
https://www.citusdata.com/
https://github.com/citusdata/citus

Everything happens in the Citus GitHub repo: You can file issues, see what the latest

commits are, and start discussions on the Citus open source GitHub repo. (Although most

of the Q&A happens on the Citus Public Slack.)

Tenant monitoring with citus_stat_tenants

When managing a Citus cluster (or really any database) one of the most important things

is getting insights into who or what is using resources. Postgres contains

pg_stat_statements and Citus added citus_stat_statements in Citus 7.5, which we then

open sourced in Citus 11.0. These views give you very detailed insights into which

Postgres queries are running most often on your system.

Now in Citus 11.3 we’re adding the citus_stat_tenants view to your arsenal. If you’re

running a multi-tenant SaaS application on top of Citus, then with citus_stat_tenants

you can very easily get an overview of the tenants that use most of the resources in your

cluster.

Since tracking this data has some performance overhead, it’s not enabled by default. But

it’s very easy to enable by setting citus.stat_tenants_track to 'all' :

ALTER SYSTEM SET citus.stat_tenants_track TO 'all';

SELECT pg_reload_conf();

When you enable the tracking there are two main ways to use the citus_stat_tenants

view.

Showing usage of tenants in real-time

The first method of using citus_stat_tenants is extremely easy. You can look directly at

the contents of the view to see the traffic that’s currently happening on your cluster.

Using the \watch command that’s included in psql you can even see it changing in real

time. Below is an example that uses citus_stat_tenants to show in real time what

companies are causing the most queries to your database:

> SELECT name, tenant_attribute, query_count_in_this_period

FROM citus_stat_tenants JOIN companies ON tenant_attribute::bigint = companies.id

ORDER BY query_count_in_this_period DESC \watch 10

 Wed 03 May 2023 02:46:14 PM CEST (every 10s)

 name │ tenant_attribute │ query_count_in_this_period

───────────────────────────┼──────────────────┼────────────────────────────

 Microsoft │ 1 │ 141

 Citywide Coffeeshop │ 2 │ 23

 Small Corner Store Bakery │ 3 │ 3

(3 rows)

 Wed 03 May 2023 02:46:24 PM CEST (every 10s)

https://github.com/citusdata/citus
https://slack.citusdata.com/
https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/
https://www.citusdata.com/blog/2018/07/31/introducing-landlord-per-tenant-stats/
https://www.citusdata.com/blog/2022/06/17/citus-11-goes-fully-open-source/
https://docs.citusdata.com/en/stable/develop/api_metadata.html?#tenant-level-query-statistics-view

 name │ tenant_attribute │ query_count_in_this_period

───────────────────────────┼──────────────────┼────────────────────────────

 Microsoft │ 1 │ 241

 Citywide Coffeeshop │ 2 │ 40

 Small Corner Store Bakery │ 3 │ 5

(3 rows)

 Wed 03 May 2023 02:46:34 PM CEST (every 10s)

 name │ tenant_attribute │ query_count_in_this_period

───────────────────────────┼──────────────────┼────────────────────────────

 Microsoft │ 1 │ 341

 Citywide Coffeeshop │ 2 │ 56

 Small Corner Store Bakery │ 3 │ 7

(3 rows)

Showing usage of tenants in monitoring dashboards

The second way in which citus_stat_tenants can be useful is by integrating it with

monitoring systems like Grafana and Prometheus. By having such systems periodically

read from the citus_stat_tenants view you can see changes over longer periods of time

in the interface that you are already used to.

Figure 1: Changes in query count per minute for different companies over time, shown in a Grafana dashboard. The data that’s

shown here came directly from citus_stat_tenants .

When integrating citus_stat_tenants directly into your monitoring system the most

important thing is to remember is to store the values from the columns that end in

_in_last_period , such as query_count_in_last_period . These numbers represent the

total statistics that were gather for the previous period. Because they are totals for a

complete period, they can easily be compared to totals taken from a later/earlier period.

https://grafana.com/
https://prometheus.io/
https://grafana.com/

This is not the case for the numbers in the _in_this_period columns, which are updated

continuously, and thus only represent the totals for a partial period.

By default the period length is one minute, but this can be changed by setting the

citus.stat_tenants_period configuration variable.

More reliable metadata syncing for very large numbers of tables

In Citus 11.0 we enabled querying from any node by synchronizing catalogs & Citus

metadata across the database cluster. That allows Citus to scale to very high transaction

throughputs and has also become a key enabler for various new features, such as change

data capture (CDC), see below!

As Citus is becoming more popular, we are seeing more and more users with a very large

number of tables (tens of thousands of tables with hundreds of thousands of shards!) In

part, this is due to the popularity of using time-partitioning for time series data on Citus.

When you have a lot of tables, synchronizing the Citus metadata to new worker nodes can

become a scalability problem by itself. We learned the hard way that if you perform too

many DDL commands in a transaction in PostgreSQL, it can generate invalidation arrays

that exceed the 1GB limit that PostgreSQL imposes on itself.

In the Citus 11.3 release, we spent a lot of time streamlining the metadata

synchronization in order to minimize memory usage, avoid transactions where necessary,

and increase overall reliability. With these changes, we expect Citus to give you a

seamless experience even with a very large number of Citus tables.

Parallel shard rebalancing across co-location groups

When we added shard rebalancing in the background to Citus 11.1, we also began

preparations for running shard moves in parallel.

In 11.3, you can now benefit from the first stage of parallel shard rebalancing: Shard

groups from different co-location groups will be moved in parallel by the rebalancer

Right now shard groups in the same co-location group will still be moved sequentially. In

the future, we also plan to add support for parallel shard rebalancing within a co-location

group.

Co-location groups are an important concept in Citus. All distributed tables in a co-

location group share the same distribution column type and the same shard hash

ranges. Also, shards with the same hash range in the same co-location group are

always on the same node. We refer to a set of co-located shards as a “shard group”.

You can see which tables share a co-location group by running SELECT * FROM

citus_tables and looking at the colocation_id column.

You do not have to do anything to enable the new parallel shard rebalance feature. When

you run SELECT citus_rebalance_start() the Citus rebalancer will automatically find

opportunities to parallelize when there are multiple co-location groups.

https://www.citusdata.com/blog/2022/06/17/citus-11-goes-fully-open-source/
https://www.citusdata.com/blog/2021/10/22/how-to-scale-postgres-for-time-series-data-with-citus/
https://www.citusdata.com/blog/2022/09/19/citus-11-1-shards-postgres-tables-without-interruption/
https://docs.citusdata.com/en/v11.2/sharding/data_modeling.html#table-co-location

MERGE support between co-located distributed tables

PostgreSQL 15 added support for the MERGE command, and as part of Citus 11.3 we

have been working on parallel, distributed MERGE between (co-located) distributed

tables.

Many of you are already familiar with the INSERT..SELECT command, which can be used

to pre-aggregate incoming data in parallel. You can also use ON CONFLICT to update

existing aggregates while also inserting new ones.

The MERGE command is a more advanced version of INSERT..SELECT that can also

DELETE. For instance, let’s say I have a stock table that keeps track of how many items I

have left.

CREATE TABLE stock (item_id bigint primary key, num_available int not null default 0);

INSERT INTO stock VALUES (1027, 3);

INSERT INTO stock VALUES (2011, 1);

INSERT INTO stock VALUES (7001, 15);

SELECT create_distributed_table('stock', 'item_id');

Periodically, my application receives a batch of stock changes. I want to update my table

to reduce the number of available items and delete records that reach 0. To do so, I can

create a staging table that is co-located with my stock table, load the data, and then…

MERGE!

-- create a co-located staging table

BEGIN;

CREATE UNLOGGED TABLE stock_changes (item_id bigint, num_consumed int);

SELECT create_distributed_table('stock_changes', 'item_id');

-- load the data

COPY stock_changes FROM STDIN WITH CSV;

1027,2

2011,1

5431,4

\.

-- merge staging data into main table, ignore unknown item_ids

MERGE INTO stock s

USING stock_changes c

ON s.item_id = c.item_id

WHEN MATCHED AND s.num_available - c.num_consumed <= 0 THEN

 DELETE

WHEN MATCHED THEN

 UPDATE SET num_available = s.num_available - c.num_consumed;

-- remove my staging table

https://www.postgresql.org/docs/current/sql-merge.html
https://docs.citusdata.com/en/v11.2/develop/reference_dml.html#caching-aggregations-with-rollups
https://www.citusdata.com/blog/2018/06/14/scalable-incremental-data-aggregation/

DROP TABLE stock_changes;

END;

-- show the updated stock table

TABLE stock;

item_id | num_available

---------+---------------

 7001 | 15

 1027 | 1

(2 rows)

Since MERGE is still a very new feature to Postgres and to Citus, there are various

limitations in the Citus support. So far, MERGE mainly works for co-located distributed

Citus tables that merge on the distribution column, and it does not support

stable/volatile function calls (e.g. inserting into a table with DEFAULT now()). However,

the fact that MERGE is parallelized across nodes can make it a powerful data processing

tool.

Logical decoding for Citus tables for CDC (preview)

A common requirement of many applications—and software as a service (SaaS)

applications especially—is the ability to perform change data capture (CDC) on the

database, meaning changes happening on the database can be consumed and processed

by other applications. PostgreSQL offers CDC via logical decoding.

Citus 11.3 adds a new citus.enable_change_data_capture setting—which is in preview,

which is just another term for “beta”. This new change data capture setting improves

logical decoding on the distributed nodes of a Citus database cluster in 2 important ways:

1. Changes to shards are emitted as changes to distributed tables, such that what you

see in the logical decoding output matches what clients do (e.g. insert into a

distributed table)

2. When Citus performs an internal data transfer (e.g. shard move,

create_distributed_table), it does not show up as a new batch of inserts in logical

decoding.

With these changes, logical decoding on distributed Citus tables starts looking like a lot

more like logical decoding on PostgreSQL tables—except that you should configure your

logical decoding clients to subscribe to all nodes in the Citus cluster at the same time.

In addition, replication slots need to be created on each node separately:

-- Publication is auto-propagated by Citus and can contain a mixture of regular tables and Citus tables

CREATE PUBLICATION distpub FOR TABLES data;

-- Replication slot needs to be created separately on all nodes

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

SELECT * FROM run_command_on_all_nodes($$SELECT pg_create_logical_replication_slot('cdc_slot', 'pgoutput'));

-- ready to consume changes from all nodes!

Logical replication of distributed tables to PostgreSQL tables

In PostgreSQL, logical decoding forms the basis of logical replication, which allows you to

replicate changes from one PostgreSQL server to another. It is now also possible to set up

logical replication from a distributed table to a regular PostgreSQL table. To do so, you

need to set up a publication on all the nodes.

On source node:

CREATE TABLE items (key text primary key, value jsonb not null default '{}');

SELECT create_distributed_table('items', 'key');

CREATE PUBLICATION items_pub FOR TABLES items;

On destination node:

CREATE TABLE items (key text primary key, value jsonb not null default '{}');

-- subscribe to coordinator

CREATE SUBSCRIPTION subc CONNECTION 'host=c.mycluster … ' PUBLICATION items_pub WITH (copy_data = false);

-- subscribe to each worker…

CREATE SUBSCRIPTION subw0 CONNECTION 'host=w0.mycluster … ' PUBLICATION items_pub WITH (copy_data = false);

CREATE SUBSCRIPTION subw1 CONNECTION 'host=w1.mycluster … ' PUBLICATION items_pub WITH (copy_data = false);

…

Inserts and other changes to the distributed table will then automatically show up in your

PostgreSQL table.

There are a few additional limitations of logical decoding on Citus tables (in preview) to

consider:

Only pgoutput & wal2json, so far: You can currently only use pgoutput and wal2json

(if installed) as decoders. Other decoders will not have the sharding-related changes

applied to them, but we can easily add more decoders so let us know which decoders

you would like us to add by opening a GitHub issue on our Citus open source repo.

Replication slots need to be created separately on each node: When you add a new

node, you first need to create a replication slot (or subscription) before rebalancing.

Out of order issues: Changes happening on the same node always arrive in the same

order, but since your client will listen to each node separately, there are no guarantees

regarding the order of changes happening across different nodes.

Specific to logical replication:

Using copy_data = true in logical replication is not officially supported yet, but not

explicitly blocked. If you use it, make sure to only use it on one of the subscriptions

https://www.postgresql.org/docs/current/logical-replication.html
https://github.com/citusdata/citus/issues

(e.g. the subscription that connects to the coordinator).

Using alter_distributed_table will break the replication stream

In addition to Citus-specific limitations, a general limitation of logical decoding in

PostgreSQL is that logical replication slots are lost after a failover (using physical

replication), unless you are using Patroni with permanent slots, or the new

pg_failover_slots extension.

We plan to solve these limitations in future Citus open source releases but wanted to give

you early access to try it with your favorite CDC clients. Once CDC is stable, we will also

start enabling it on Azure, in the Azure Cosmos DB for PostgreSQL managed service.

Onwards to Citus 12

We are currently laser-focused on making Citus the best possible database for scalable,

multi-tenant SaaS applications. The new tenant monitoring feature in 11.3 gives direct

insight into your top tenants within the database, such that you can quickly understand

the state of your cluster (“who is using so much CPU?”) and make decisions regarding

your tenants.

Several of the enhancements in 11.3, such as the parallel shard rebalance and metadata

syncing improvements, are partially in preparation for a bigger feature (in Citus 12) that

we call schema-based sharding. Distributing tables by tenant ID scales very well, and the

number of tenants is virtually unbounded, but to use it you may have to (re)design your

data model, including table schema, primary keys, foreign keys. Another common pattern

for building multi-tenant apps on PostgreSQL, which is used by various ORMs (e.g. Ruby

Apartment and Python django-tenants), is to create a separate schema for each tenant.

Our goal in the next release of Citus is to transparently distribute schemas across nodes

without data model or application changes, such that you can get the benefits of

horizontal scale out without the downsides.

Next steps with Citus 11.3

If you want to get started with Citus 11.3, these links should prove useful:

Download page

Citus 11.3 Updates page: a detailed release notes page

Citus 11.3 Release Party: a livestream with demos & discussion about 11.3 happening

(mark your calendar to watch the livestream demos on Mon May 15 @ 9:00am PDT)

Citus open source repo on GitHub

Citus docs

https://patroni.readthedocs.io/en/latest/SETTINGS.html
https://github.com/EnterpriseDB/pg_failover_slots
https://github.com/citusdata/citus
https://learn.microsoft.com/azure/cosmos-db/postgresql/introduction
https://github.com/influitive/apartment#notes-on-postgresql
https://github.com/django-tenants/django-tenants
https://www.citusdata.com/download
https://www.citusdata.com/updates/v11-2/
https://www.youtube.com/live/ihgr_QEX6IU
https://www.addevent.com/event/Dt16932785
https://github.com/citusdata/citus
https://docs.citusdata.com/

We are also curious about your feedback, especially on new brand features like the tenant

monitoring and the logical decoding improvements for CDC (in preview). If you find any

issues at all, please open a GitHub issue or let us know via the Citus Slack.

Enjoy what you’re reading?

If you want to read more posts from our Citus database and Postgres teams, sign up for our monthly newsletter and get the latest content

delivered straight to your inbox.

Written by Marco Slot

Lead engineer for the Citus database engine at Microsoft. Speaker at Postgres Conf

EU, PostgresOpen, pgDay Paris, Hello World, SIGMOD, & lots of meetups. Talk
selection team member for Citus Con: An Event for Postgres. PhD in distributed

systems. Loves mountain hiking.

 @marcoslot

 marcocitus

CDC Citus Citus release notes co-location distributed databases

distributed Postgres logical decoding monitoring multi-tenant open source

SaaS shard rebalancer

POPULAR POSTS

SHARE THIS POST

 COPY LINK

Get our monthly newsletter straight to your inbox

https://github.com/citusdata/citus/issues
https://slack.citusdata.com/
https://www.citusdata.com/blog/authors/marco-slot/
https://www.twitter.com/marcoslot
https://github.com/marcocitus
https://www.citusdata.com/blog/tags/cdc/
https://www.citusdata.com/blog/tags/citus/
https://www.citusdata.com/blog/tags/citus-release-notes/
https://www.citusdata.com/blog/tags/co-location/
https://www.citusdata.com/blog/tags/distributed-databases/
https://www.citusdata.com/blog/tags/distributed-postgres/
https://www.citusdata.com/blog/tags/logical-decoding/
https://www.citusdata.com/blog/tags/monitoring/
https://www.citusdata.com/blog/tags/multi-tenant/
https://www.citusdata.com/blog/tags/open-source/
https://www.citusdata.com/blog/tags/saas/
https://www.citusdata.com/blog/tags/shard-rebalancer/
https://twitter.com/share?url=https://www.citusdata.com/blog/2023/05/05/whats-new-in-citus-11-3-multi-tenant-saas/&text=What%E2%80%99s%20new%20in%20Citus%2011.3%20&%20Postgres%20for%20multi-tenant%20SaaS%20workloads&via=citusdata
https://www.linkedin.com/shareArticle?mini=true&url=https://www.citusdata.com/blog/2023/05/05/whats-new-in-citus-11-3-multi-tenant-saas/

RELATED CONTENT

SUBSCRIBE TO OUR NEWSLETTER

Join our Slack!

LATEST POSTS

Patroni 3.0 & Citus: Scalable, Highly Available Postgres
By Alexander Kukushkin

Debugging PostgreSQL CI failures faster: 4 tips
By Nazir Bilal Yavuz

Postgres 15 available in Azure Cosmos DB for PostgreSQL
By Nik Larin

Debugging Postgres autovacuum problems: 13 tips
By Samay Sharma

How to benchmark performance of Citus and Postgres with HammerDB on Azure
By Jelte Fennema

What’s new in Citus 11.2 for Postgres, plus Patroni HA support for
Citus
By Marco Slot

Read more

Distributed Postgres goes full open source with Citus: why, what &
how
By Jelte Fennema

Read more

Ultimate Guide to Citus Con: An Event for Postgres, 2023 edition
By Claire Giordano

Read more

https://slack.citusdata.com/
https://www.citusdata.com/blog/
https://www.citusdata.com/blog/2023/03/06/patroni-3-0-and-citus-scalable-ha-postgres/
https://www.citusdata.com/blog/2023/01/18/debugging-postgres-ci-failures-faster-4-tips/
https://www.citusdata.com/blog/2022/10/21/postgres15-available-in-azure-cosmos-db-for-postgresql/
https://www.citusdata.com/blog/2022/07/28/debugging-postgres-autovacuum-problems-13-tips/
https://www.citusdata.com/blog/2022/03/12/how-to-benchmark-performance-of-citus-and-postgres-with-hammerdb/
https://www.citusdata.com/2023/02/08/whats-new-in-citus-11-2-patroni-ha-support/
https://www.citusdata.com/blog/2022/09/12/distributed-postgres-goes-full-open-source-with-citus/
https://www.citusdata.com/blog/2023/03/31/ultimate-guide-to-citus-con-2023/
https://github.com/citusdata/citus
https://stackoverflow.com/questions/tagged/citus
https://www.twitter.com/citusdata
https://slack.citusdata.com/
https://www.youtube.com/playlist?list=PLixnExCn6lRq261O0iwo4ClYxHpM9qfVy
https://www.citusdata.com/feed.xml

RESOURCES

Getting Started

Documentation

Release Updates

FAQ

Customer Stories

Support

Blog

TECHNOLOGY

Citus Overview

Open Source

Citus on Azure

Citus Enterprise

Use Cases

Download

ABOUT

Contact Us

Our Story

Events

Careers

Newsroom

Pricing

COMMUNITY

GitHub repo

Citus Slack

Stack Overflow

Newsletters

Citus Con

Citus Data is now part of

Privacy Statement ©2023 Citus Data, a Microsoft Company. All rights reserved.

https://www.citusdata.com/getting-started/
https://docs.citusdata.com/
https://www.citusdata.com/updates/
https://www.citusdata.com/faq
https://www.citusdata.com/customers/
https://www.citusdata.com/support
https://www.citusdata.com/blog/
https://www.citusdata.com/product
https://www.citusdata.com/product/community
https://www.citusdata.com/product/citus-on-azure/
https://www.citusdata.com/product/enterprise
https://www.citusdata.com/use-cases
https://www.citusdata.com/download/
https://www.citusdata.com/about/contact_us
https://www.citusdata.com/about/our-story/
https://www.citusdata.com/events
https://www.citusdata.com/jobs
https://www.citusdata.com/newsroom/
https://www.citusdata.com/pricing
https://github.com/citusdata/citus
https://slack.citusdata.com/
https://stackoverflow.com/questions/tagged/citus
https://www.citusdata.com/join-newsletter
https://www.citusdata.com/cituscon/
https://go.microsoft.com/fwlink/?LinkId=521839

