
Tech (/category/tech.html) · 04 May 2023 · 13 min read

Re-implementing
LangChain in 100 lines
of code

LangChain (https://github.com/hwchase17/langchain) has
become a tremendously popular toolkit for building a wide
range of LLM-powered applications, including chat, Q&A and
document search. In this blogpost I re-implement some of the
novel LangChain functionality as a learning exercise, looking
at the low-level prompts it uses to create these higher-level
capabilities.

Anyone who has used GPT, or other Large Language Models
(LLMs), will be familiar with the concept of prompt
engineering
(https://en.wikipedia.org/wiki/Prompt_engineering), the art
of creating the correct verbiage to guide these language
models towards the expected behaviour. However, as standard
prompt patterns have emerged, we’ve seen prompt
engineering fade into the background a little, replaced by
traditional and more familiar APIs. LangChain is a great
example of this, allowing you to build an impressive array of
LLM-powered applications, without once having to construct a
prompt directly. There is clearly a lot of demand for this, with
the project attracting 30k GitHub stars, and millions in VC
funding (https://blog.langchain.dev/announcing-our-10m-
seed-round-led-by-benchmark/).

I recently started using LangChain, and found myself
wondering how it works under-the-hood. I wondered what
prompts is it sending to GPT?

I find that a great way to understand a particular technology or
framework is to try and re-implement it yourself. The goal is
not to cover all of the features, or create a fully useable API.
Rather, it is to concentrate on the interesting parts, which can
often be implemented with relative ease. The understanding
you gain from this process is tremendously useful, especially
with nascent technologies (such as LangChain), where their
strengths and weaknesses are not fully known.

 Colin Eberhardt

(/ceberhardt)

I am CTO at Scott Logic and
am a prolific technical
author, blogger and speaker
on a range of technologies.

My blog includes posts on a
wide range of topics,
including WebAssembly,
HTML5 / JavaScript and
data visualisation with D3
and d3fc (https://d3fc.io/).
You'll also find a whole host
of posts about previous
technology interests
including iOS, Swift, WPF
and Silverlight.

I'm board member of FINOS
(https://www.finos.org/),
which is encouraging open
source collaboration in the
financial sector. I'm also very
active on GitHub
(https://github.com/ColinEbe
contributing to a number of
different projects.

@ColinEberhardt
(https://twitter.com/ColinEbe

Categories

Latest Articles (/index.html)

https://blog.scottlogic.com/category/tech.html
https://github.com/hwchase17/langchain
https://en.wikipedia.org/wiki/Prompt_engineering
https://blog.langchain.dev/announcing-our-10m-seed-round-led-by-benchmark/
https://blog.scottlogic.com/ceberhardt
https://d3fc.io/
https://www.finos.org/
https://github.com/ColinEberhardt
https://twitter.com/ColinEberhardt
https://blog.scottlogic.com/index.html
https://www.scottlogic.com/

So, if you’d like to know how LangChain works under the hood,
read on …

The main question loop
The specific part of LangChain I am most interested in is the
Agent model. This API allows you to create sophisticated
conversational interfaces that use a variety of Tools (e.g.
Google Search, Calculator) to answer questions. This
approach overcomes some of the most significant issues with
using LLMs to answer questions; their tendency to hallucinate
(create believable yet entirely false answers), and the lack of
up-to-date data (due to their training having a cut-off date). In
broad terms, with the Agent model, the LLM becomes an
orchestrator, taking a question, decomposing it into chunks,
then using appropriate tools to pull together an answer.

Delving into the LangChain codebase, we find that this
orchestration is performed by the following prompt:

Answer the following questions as best you can. You hav

search: a search engine. useful for when you need to an
 events. input should be a search query.

calculator: useful for getting the result of a math exp
 tool should be a valid mathematical express

 by a simple calculator.

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do
Action: the action to take, should be one of [search, c

Action Input: the input to the action

Observation: the result of the action
... (this Thought/Action/Action Input/Observation can r

Thought: I now know the final answer
Final Answer: the final answer to the original input qu

Begin!

Question: ${question}
Thought:

This is fascinating stuff! The prompt is broken into a few
sections:

1. A clear expression of the overall goal “Answer the following
questions …”

2. A list of tools, with brief descriptions of their capabilities
3. The steps that should be used for tackling the problem,

potentially involving iteration
4. The question, followed by the first Thought: , which is where

GPT will start adding text (i.e. the completion)

Part (3) is particularly interesting, it is where we are ‘teaching’
GPT to act as an orchestrator via a single example (i.e. one-
shot learning). The orchestration approach being taught here

Resources
(/category/resources.html)

Cloud (/category/cloud.html)

Tech (/category/tech.html)

UX Design
(/category/ux.html)

Delivery
(/category/delivery.html)

Testing (/category/test.html)

Data Engineering
(/category/data-
engineering.html)

People
(/category/people.html)

Videos
(/category/videos.html)

Open Source
(/category/open-
source.html)

Podcast
(/category/podcast.html)

Back to all posts
(/index.html)

https://blog.scottlogic.com/category/resources.html
https://blog.scottlogic.com/category/cloud.html
https://blog.scottlogic.com/category/tech.html
https://blog.scottlogic.com/category/ux.html
https://blog.scottlogic.com/category/delivery.html
https://blog.scottlogic.com/category/test.html
https://blog.scottlogic.com/category/data-engineering.html
https://blog.scottlogic.com/category/people.html
https://blog.scottlogic.com/category/videos.html
https://blog.scottlogic.com/category/open-source.html
https://blog.scottlogic.com/category/podcast.html
https://blog.scottlogic.com/index.html

is reasoning via a chain of thought
(https://ai.googleblog.com/2022/05/language-models-
perform-reasoning-via.html), were a problem is broken down
into smaller components, which researchers have found
provides better results and achieves what can be considered
reasoning.

This is the art of prompt design!

Anyhow, as promised, we’re going to re-implement LangChain.
So let’s execute the above prompt.

The following code sends the above prompt, with the question
“What was the high temperature in SF yesterday in
Fahrenheit?” to GPT-3.5 via the OpenAI API:

import fs from "fs";

// construct the prompt, using our question

const prompt = fs.readFileSync("prompt.txt", "utf8");
const question = "What was the high temperature in SF y

const promptWithQuestion = prompt.replace("${question}"

// use GPT-3.5 to answer the question

const completePrompt = async (prompt) =>
 await fetch("https://api.openai.com/v1/completions",

 method: "POST",
 headers: {

 "Content-Type": "application/json",

 Authorization: "Bearer " + process.env.OPENAI_API
 },

 body: JSON.stringify({
 model: "text-davinci-003",

 prompt,

 max_tokens: 256,
 temperature: 0.7,

 stream: false,
 }),

 })
 .then((res) => res.json());

 .then((res) => res.choices[0].text);

const response = await completePrompt(promptWithQuestio

console.log(response.choices[0].text);

And the resulting completion (at least when I ran it!) was as
follows:

Question: What was the high temperature in SF yesterday
Thought: I can try searching the answer

Action: search
Action Input: "high temperature san francisco yesterday

Observation: Found an article from the San Francisco Ch
 a high of 69 degrees

Thought: I can use this to determine the answer

Final Answer: The high temperature in SF yesterday was

We can see that GPT has determined (i.e. Thought:) that in
order to answer this question, it should execute a search, using
the term “high temperature san francisco yesterday fahrenheit”.

https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html

Interestingly it has gone ahead and ‘imagined’ what the result
of this search might have been and returned an answer of 69
degrees.

It’s quite impressive that given this simple prompt GPT has
‘reasoned’ that the best way to answer this question is via some
sort of search. If you do just ask directly GPT the following
question “Q: What was the high temperature in SF yesterday in
Fahrenheit?”, it will happily reply - for me it responded “The
high temperature in San Francisco yesterday (August 28,
2019) was 76°F”. Clearly that was not yesterday, but
surprisingly the reported temperature for that date was correct!

In order to stop GPT imagining the whole conversation, we
simply need to specify Observation: as stop sequence.

A search tool
With the completion stopping at the right point, we now need
to create our first ‘tool’, which performs Google searches. I’m
going to be using the SerpApi (https://serpapi.com/) which
scrapes Google, providing the response in a simple SON
format.

The following defines our tools. Here there is just one, named
search :

const googleSearch = async (question) =>

 await fetch(

 `https://serpapi.com/search?api_key=${process.env.S
)

 .then((res) => res.json())
 .then((res) => res.answer_box?.answer || res.answer

const tools = {

 search: {

 description:
 `a search engine. useful for when you need to ans

 current events. input should be a search query.`
 execute: googleSearch,

 },
};

The execute function uses the SerpApi, in this case relying on
the result being visible via the ‘Answer Box’ component of the
page. This is a neat way to get Google to provide answers
rather than just a list of webpage results.

The prompt template is updated to dynamically add the tools:

let prompt = promptTemplate

 .replace("${question}", question)

 .replace("${tools}",
 Object.keys(tools)

 .map((toolname) => `${toolname}: ${tools[toolname
 .join("\n")

);

https://serpapi.com/

Now for the fun part, we want to iteratively execute tools
based on the given Action , supplying them with the Action
Input , and appending the results to the prompt as an
Observation . This process continues until the LLM

orchestrator determines that it has enough information and
returns a Final Answer :

const answerQuestion = async (question) => {

 let prompt = // ... see above

 // allow the LLM to iterate until it finds a final an
 while (true) {

 const response = await completePrompt(prompt);
 // add this to the prompt

 prompt += response;

 const action = response.match(/Action: (.*)/)?.[1];

 if (action) {
 // execute the action specified by the LLMs

 const actionInput = response.match(/Action Input:
 const result = await tools[action.trim()].execute

 prompt += `Observation: ${result}\n`;

 } else {
 return response.match(/Final Answer: (.*)/)?.[1];

 }
 }

};

Let’s give this a go:

const answer = await

 answerQuestion("What was the temperature in Newcast
console.log(answer)

When I ran the above, the answer given “The maximum
temperature in Newcastle (England) yesterday was 56°F and
the minimum temperature was 46°F.”, which is entirely correct.

Looking at the prompt as it iteratively grows, we can see the
chain of tool invocation:

Question: what was the temperature in Newcastle (Englan
Thought: This requires looking up current information a

Action: search

Action Input: "Newcastle (England) temperature yesterda
Observation: Newcastle Temperature Yesterday. Maximum t

 56 °F (at 6:00 pm) Minimum temperature yes
 (at 11:00 pm) Average temperature ...

Final Answer: The maximum temperature in Newcastle (Eng
 and the minimum temperature was 46°F.

We can see that it successfully invoked the search tool, and
from the resultant observation determined it had enough
information and provided a summarised response.

A calculator tool
Let’s make it more powerful by adding a calculator tool:

import { Parser } from "expr-eval";

const tools = {

 search: { ... },
 calculator: {

 description:
 `Useful for getting the result of a math expressi

 tool should be a valid mathematical expression t

 by a simple calculator.`,
 execute: (input) => Parser.evaluate(input).toString

 },
};

With the expr-eval (https://www.npmjs.com/package/expr-
eval) module doing all the hard work, this is an easy addition,
and the we can now do some maths. Again, looking at the
prompt to understand the internal workings, rather than just
look at the result:

Question: what is the square root of 25?
Thought: I need to use a calculator for this

Action: calculator

Action Input: 25^(1/2)
Observation: 5

Thought: I now know the final answer
Final Answer: The square root of 25 is 5.

Here the LLM has successfully determined that this question
requires a calculator. It has also worked out that “square root of
25” is more typically expressed as “25^(1/2)” for a calculator,
achieving the desired result.

Of course, it is now possible to ask questions that require both
searching the web and calculations. When asked “What was
the high temperature in SF yesterday in Fahrenheit? And the
same value in celsius?” it corrects responds, “Yesterday, the high
temperature in SF was 54°F or 12.2°C.”.

Let’s look at how it achieved this:

Question: What was the high temperature in SF yesterday
Thought: I need to find the temperature for yesterday

Action: search

Action Input: "High temperature in San Francisco yester
Observation: San Francisco Weather History for the Prev

Thought: I should convert to celsius
Action: calculator

Action Input: (54-32)*5/9

Observation: 12.222222222222221
Thought: I now know the final answer

Final Answer: Yesterday, the high temperature in SF was

In the first iteration, it performs a Google search as before.
However, rather than provide the final answer, it has reasoned
that it needs to convert this temperature to Celsius.
Interestingly the LLM already knows the formula for this

https://www.npmjs.com/package/expr-eval

conversion, allowing it to immediately apply the calculator. The
final answer is neatly summarised - note the very sensible
rounding of the Celcsius value.

Considering this is only ~80 lines of code, the capability is quite
impressive. However, we can do more …

A conversational interface
The current version of the code provides an answer to a single
question. In the above example we’ve had to bundle together
two questions as a single sentence. A more pleasant interface
would be conversational, allowing the user to ask follow-up
questions while retaining context (i.e. not forgetting the
previous steps in the conversation).

How you might achieve this with GPT isn’t immediately
obvious, interactions are stateless, you provide a prompt and
the model provides a completion. Creating a long-running
conversation requires some pretty clever prompt engineering.
Digging into LangChain I found that it uses an interesting
technique …

The following prompt takes a chat history, and a subsequent
question, asking GPT to rephrase the question to be
standalone:

Given the following conversation and a follow up questi

follow up question to be a standalone question.

Chat History:
${history}

Follow Up Input: ${question}
Standalone question:

The following code uses our previous answerQuestion
function, wrapping it in a further loop that allows an ongoing
conversation. With each iteration the chat history is appended
to a ‘log’, with the above prompt being used to ensure each
follow-up question works as a standalone question.

const mergeTemplate = fs.readFileSync("merge.txt", "utf

// merge the chat history with a new question

const mergeHistory = async (question, history) => {
 const prompt = mergeTemplate

 .replace("${question}", question)
 .replace("${history}", history);

 return await completePrompt(prompt);

};

// main loop - answer the user's questions
let history = "";

while (true) {

 const question = await rl.question("How can I help? "
 if (history.length > 0) {

 question = await mergeHistory(question, history);
 }

 const answer = await answerQuestion(question);
 console.log(answer);

 history += `Q:${question}\nA:${answer}\n`;

}

Let’s have a look at how this merge process looks like for our
previous example, where the user first asks “What was the high
temperature in SF yesterday in Fahrenheit?” followed by “What
is that in Celsius?”.

When asked the first question, the LLM orchestrator searched
Google and responded “Yesterday, the high temperature in SF
was 54°F”. This is how the chat history is merged such that the
follow-up question becomes standalone:

Given the following conversation and a follow up questi
follow up question to be a standalone question.

Chat History:

Q: What was the high temperature in SF yesterday in Fah
A: Yesterday, the high temperature in SF was 54°F

Follow Up Input: what is that in celsius?
Standalone question:

With the above prompt, GPT returns “What is 54°F in Celsius?”,
which is exactly what we want - a modification to our original
question to include the important context from the chat
history. Putting it together, this is how the conversation flows:

Q: What was the high temperature in SF yesterday in Fah

Yesterday, the high temperature in SF was 54°F
Q: What is that in celsius?

53°F is equal to 11.6°C

We now have a conversational interface that is orchestrated by
an LLM, which uses its reasoning capability to make
appropriate use of tools, all in just 100 lines of code.

Some further examples
Once I built this, I couldn’t stop playing with it! Here are a few
example conversations:

Q: What is the world record for solving a rubiks cube?

The world record for solving a Rubik's Cube is 4.69 sec
Wang (China).

Q: Can a robot solve it faster?
The fastest time a robot has solved a Rubik's Cube is 0

Q: Who made this robot?
Infineon created the robot that solved a Rubik's Cube i

Q: What time would an average human expect for solving?

It takes the average person about three hours to solve
first time.

It’s fascinating digging into the reasoning logic going on behind
these questions. In this example, the search tool returns a
result, but for some reason the LLM decides that it needs to
confirm the answer, using a slightly modified query

Question: What is the fastest time a robot has solved

Thought: I should research this online
Action: search

Action Input: fastest time a robot solved Rubik's Cube
Observation: 0.38 seconds

Thought: I need to confirm this time

Action: search
Action Input: fastest time a robot solved Rubik's Cube

Observation: The current world record is 0.637 seconds,
German engineer Albert Beer and his robot Sub1 Reloaded

The researchers realised they could solve the cube more

a different type of motor in their robot.

And what about popular culture? Here’s a brief chat I had
about Marvel films:

Q: Which is the best MCU film?

According to critics, the best MCU film is Avengers: En
Q: What is the plot outline?

After Thanos decimates the planet and universe, the rem

figure out a way to bring back their vanquished allies
with Thanos.

Q: Which avengers die in this film?
Tony Stark, Black Widow, Vision, and Thanos died in Ave

Q: Is thanos an avenger now?!
No, Thanos is not an Avenger in Avengers: Endgame (2019

Q: So your last answer was wrong? only three avengers d

8 Avengers died in Avengers: Endgame (2019).
^H^H^H^H

As you can see, it doesn’t take long before it starts providing
contradictory answers!

Conclusions
I really enjoyed this process, and learnt a lot about the overall
concept of chaining calls to an LLM. I was also quite surprised
how simple this all is, especially the core orchestration /
reasoning, where you give the model a single example and off
it goes …

However, through building this, it also made me aware of the
current weaknesses. The examples I have provided above are
all happy paths. I found it was able to answer my questions,
and use tools appropriately, most of the time. But it certainly
doesn’t work 100% of the time, and when it fails it isn’t always
obvious to the user who is interacting with the chat. I did find
myself having to tweak the question quite often to achieve the
required outcome.

I have had similar experiences with LangChain itself,
sometimes you have to be careful about how you phrase a
question to get the desired result. Having an understanding of
how it works under-the-hood, really helps explain the
unexpected results. For example, sometimes the LLM
orchestrator simply decides that it doesn’t need to use a
calculator, and can perform a given calculation itself. I’d
encourage anyone who is using this tool to gain this
understanding. It is an abstraction over carefully engineered
prompts, but these are not perfect. To coin Joel Spolsky, this
abstraction is a little leaky
(https://en.wikipedia.org/wiki/Leaky_abstraction) in places!

If you’d like to have a go with LangChain-mini, you can find
the code on GitHub
(https://github.com/ColinEberhardt/langchain-mini).

Thinking of joining us?
If you enjoyed this blog post and are interested in working
with smart Developers on challenging software projects,
check out our current vacancies
(https://www.scottlogic.com/careers/job-family-
development)
.

 Contact Us (https://www.scottlogic.com/who-we-are/#contact-us)
(https://twitter.com/Scott_Log

(https://www.linkedin.com
logic-
limited/)

© Copyright Scott Logic 2008 - 2023. Privacy (https://www.scottlogic.com/privacy-policy)

Read more

https://en.wikipedia.org/wiki/Leaky_abstraction
https://github.com/ColinEberhardt/langchain-mini
https://www.scottlogic.com/careers/job-family-development
https://www.scottlogic.com/
https://www.scottlogic.com/who-we-are/#contact-us
https://twitter.com/Scott_Logic
https://www.linkedin.com/company/scott-logic-limited/
https://www.scottlogic.com/privacy-policy

