
"hi aaaron"

SCRAPSCRIPT C O M I N G 2 0 2 4

greet �� person:ron 3

. greet �� person �� text =
 | :cowboy �� "howdy"
 | :ron n �� "hi " �� a �� "ron" , a = text/repeat n "a"
 | :parent :m �� "hey mom"
 | :parent :f �� "greetings father"
 | :friend n �� "yo" �� list/repeat n �� string/join " "
 | :stranger "felicia" �� "bye"
 | :stranger name �� "hello " �� name

. person =
 : cowboy
 : ron int
 : parent s , s = (� m : f)
 : friend int
 : stranger text

Scrapscript is best understood through a few perspectives:

“it’s JSON with types and functions and hashed references”

“it’s tiny Haskell with extreme syntactic consistency”

“it’s a language with a weird IPFS thing”

Scrapscript solves the software sharability problem.

Modern software breaks at boundaries. APIs diverge,

packages crumble, configs ossify, serialization corrupts, git

tangles, dependencies break, documentation dies,

vulnerabilities surface, etc.

To make software safe and sharable, scrapscript combines

existing wisdom in new ways:

all expressions are content-addressible “scraps”

https://scrapscript.org/

all programs are data

all programs are “platformed”

These simple guarantees produce new paradigms:

Content-Addressible Everything

Worldwide Collaborative Namespace

No Broken Dependencies

Expression-Level Versioning

Time-Travel Interpreter

The “Platform” Paradigm

Designed For Embedded DSLs

Self-Documenting Typed Configs

Large As A Language; Small As A Message

All Valid Programs Return Valid Programs

Send Arbitrary Types Over The Wire

Send Unevaluated Sandboxed Programs

Comes With “Flat” Binary Representation

Magic Compression

First-Class Network Requests

Serialization-Free Experience

Typecheck Across Network Bounds

Tooling From First-Principles

Optimized For AI & Autocomplete

Snippets On Steroids

Seamlessly Publish And Partake

Hosting, Accounts, And Payments

Brand New Browser

Content-Addressible Everything

Any chunk of the language can be replaced with a hash.

1346269

1346269

These chunks are called “scraps”.

Scraps are stored/cached/named/indexed in global distributed

“scrapyards”.

Worldwide Collaborative Namespace

31 �� janedoe91/f�bonacci

31 �� #sha1$e4caecf0d6f84d4ad72e228adce6c2b46a0328f9$0

Scrapscript rejects traditional package-management. Instead,

“scrapyards” combine features from Smalltalk, Hackage, IPFS,

GitHub, and StackOverflow. This new paradigm empowers

devs to safely collaborate in live environments.

No Broken Dependencies

Every scrap carries its own immutable dependencies.

The language itself forms merkle trees; VCS tools like git are

optional. Every expression is independently version-controlled

through the global namespace.

Expression-Level Versioning

pair
(spaceq/is�planet@2005 "pluto")

pair true false

true

false

(spaceq/is�planet@2006 "pluto")

Every expression in the ecosystem can be independently

spliced and “time-travelled”.

To avoid giant updates, scrapscript tooling can incrementally

upgrade your code. Any chunk of code can be pinned

independently to upgrade at a later time.

Time-Travel Interpreter

$ echo 'spaceq/is�planet "pluto"' | scrap eval ��t="2005-01-01"

$ echo 'spaceq/is�planet "pluto"' | scrap eval ��t="2006-12-31"

Easily inspect code regressions. Execute code with

dependencies from a specific point in time.

The “Platform” Paradigm

Scrapscript acts as an algebra for performant “platforms”.

By embracing “managed effects” (like Elm and Roc),

scrapscript stays small and simple.

https://blog.testdouble.com/posts/2022-02-16-interview-eric-newbury/

Designed For Embedded DSLs

h1 [] [text "hello world"]
. { h1, text } = luffy88/html�tags

| "/home" �� q �� res:success �� "<p>howdy " �� name �� "��p>"
 , name = q �� dict/get "name" �� maybe/default "partner"
| "/contact" �� _ �� res:success "<a href="mailto:hello@example.c
| _ �� _ �� res:notfound "<p>not found��p>"
. res = : success text : notfound text

Platforms are flexible! Use scrapscript as a web server,

templating language, shell, compilation target, tiny embedded

OS, query language, or anything imaginable.

Self-Documenting Typed Configs

my�org:my�conf�g
{ name = "my�server-001"
, cpus = �4
, mem = �16
}
. my�org = : my�conf�g
 { name = text
 , cpus = : 1 : 2 : 4 : 8
 , mem = : 1 : 2 : 4 : 8 : 16 : 32
 }

Large As A Language; Small As A Message

Scrapscript is a full programming language designed to be

sent over the wire with type-safety in mind.

All Valid Programs Return Valid Programs

my�type:left
. my�type =
 : left
 : right

ok 43

err [eval/type�error "+" "int" "text"]

$ echo 'my�type:left . my�type = : left : right' \
> | scrap eval \
> | scrap eval \
> | scrap eval

$ echo 'ok (42 + 1)' \
> | scrap eval ��result \
> | scrap eval ��result \
> | scrap eval ��result

$ echo 'ok (42 + "apple")' \
> | scrap eval ��result \
> | scrap eval ��result \
> | scrap eval ��result

Scrapscript is small enough to be its own complete datatype.

Every scrap carries its own custom types. Stale references are

simply impossible.

Programs can be chained and transformed in completely new

ways. Pass your scraps through linters and optimizers in

simple pipelines.

Send Arbitrary Types Over The Wire

0F

C3

animal:horse "Lucy"
. animal =
 : horse text
 : zebra int

Let the computers communicate which types they’re using.

Don’t waste engineering hours juggling types and serialization

across different machines.

Send Unevaluated Sandboxed Programs

quang77/nth�digit�pi 420000000000

Scrapscript programs are safe to send around.

Many client/server relationships can be radically simplified by

skipping serialization.

Comes With “Flat” Binary Representation

$ echo '3 * 5' | scrap eval | scrap flat | hexdump -C

$ echo 'true' | scrap flat | hexdump -C

$ echo '[false, true]' | scrap flat | hexdump -C

92C2C3

Put programs into JSONB-sized packages. Scrapscript fits into

msgpack.

Magic Compression

$ echo 'sarahsmith65/very�large�video' | scrap flat | hexdump -C

D8A196C4BC3A1139B2413CBE2EBECA8F3B754166450E

Instead of sharing large dumps of data, you can send

references to any data anywhere.

By sending references, other machines can opt to pull the data

from cache or high-speed CDNs.

First-Class Network Requests

By leveraging scraps-as-messages, scrapscript explores new

networking paradigms.

Scrapyards enable new compile-time primitives for verifying

type-safety across network boundaries. “Contracts” are

automatically inferred and enforced between clients, servers,

and external APIs.

Serialization-Free Experience

https://msgpack.org/

["https:��ciechanow.ski/mechanical�watch/"
, "http:�����.paulgraham.com/todo.html"
, "https:��sive.rs/hellyeah"
]

error: @rebbit/users expects type rebbit/users�request

$ echo "@hucksternews/frontpage 3" | scrap platform task

Scrapscript automatically serializes and deserializes scraps

across any API boundaries. The system doesn’t care whether

you use IPC, HTTP, QUIC, email, etc.

Typecheck Across Network Bounds

$ echo "@rebbit/users 42" | scrap eval

The scrapscript compiler tells you when remote APIs differ

from the code. And if the API changes while the code is

running, scrapscript offers a series of graceful handling

options.

Tooling From First-Principles

Scrapscript vertically integrates editors, VCS, configuration,

platforms, payments, data, and cloud infrastructure.

Optimized For AI & Autocomplete

f a b
. f = | x �� y �� x * y

task:success ()

"hello"

. a = 1

. b = 2

Scrapscript encourages wishful thinking.

Declare your goal up-front, and let your tooling make educated

guesses about how to get there.

Snippets On Steroids

$ echo "`633b327df5e54bb626300a19a459b7bd81cce3ad13f72aa395df41e0
| scrap save "my�key"

Save your scraps in scrapbooks to privately sync across your

devices.

Use team scrapbooks to collaborate on code in a live

environment.

Seamlessly Publish And Partake

@yard/publish my�key "greet" "| _ �� \"hello\""

connie2036/greet "hi"

@yard/get "connie2036/greet"

https://wiki.c2.com/?WishfulThinking

task:success "greet" "| _ �� \"hello\""

task:success ()

@yard/delete my�key "greet"

Scrapyards store scraps in an IPFS-like system with name and

versioning information.

Hosting, Accounts, And Payments

Development doesn’t need to be difficult. Scraplab will offer

the best features of the following services in an integrated

experience:

Stripe/Gumroad/Patreon

Netlify/Fly.io

GitHub

Brand New Browser

The scrapland browser turns every scrap into its own

interactive page.

Scrapscript was designed by Taylor Troesh.

Say hello if you want to receive updates or join the team.

https://taylor.town/
mailto:hello@taylor.town

