
Home Articles Books Stories

Use Databases Without
Putting Domain Logic in
Them
February 09, 2023 • 6 minute read

Even though I’m very passionate about front-end development now, I started

my career with different intentions. For the first few years, I worked

predominantly on the back-end, and to this day, I move to the full-stack gray

area when the situation demands it.

But databases are one part of the stack that’s always given me trouble.

Code is ephemeral by nature. Every deployment can completely change its

design or structure with little regard to its previous state. As long as it produces

the desired output and side effects, you can refactor the implementation to

support new requirements.

Data is not like this.

Data can’t be (easily) changed to fit new business needs. You can’t delete it

and start from scratch because your users depend on it. And if a bug corrupts it,

it’s not just a matter of resolving the cause. You have to put the data in order

too.

I don’t have any claims of mastery over databases. I have a passable knowledge

of SQL and a limited understanding of data modeling in NoSQL databases.

Still, to make my life easier, I’ve reached an important conclusion - utilize

databases as much as possible without putting domain logic in them.

https://alexkondov.com/
https://alexkondov.com/articles
https://alexkondov.com/books
https://alexkondov.com/stories

Most applications will want to execute logic as a result of something

happening with their data. You can update a table holding statistics as a new

record is saved or modify related records in a denormalized store when one is

updated.

It’s very appealing to implement this functionality in the database using some

sort of trigger or stored procedure. After all, the store is doing all the work, and

we would save an additional call from the application.

But this approach introduces maintainability problems and breaks the

separation of concerns we hold so dear.

We’re used to the application being the engine behind a product. It handles

input from users, delivers output, and creates all the necessary side effects like

database calls. If I have to work on a Node-based REST API, I would look

through its handlers and files to see how it works

So it can be confusing if some of this functionality is implemented in the

database instead.

Maintaining software is hard enough, so if we split our domain logic between

the application and its storage, we’re not doing ourselves a favor.

The functionality implemented outside our codebase is not subject to the same

design rules and patterns we follow. Also, engineers proficient in the

programming language we chose may lack the knowledge and understanding

of the databases’ mechanisms.

In effect, this is like introducing another language to your tech stack.

This leaves more room for error and makes our logic harder to test since it

can’t be easily mocked or executed with the rest of our application-level tests.

Logic in the Database

With all that said, we do want to take advantage of all our database’s

capabilities. If there’s a way to do more with a single query, without writing

logic in the store, then we should do so.

I recently worked on functionality that allowed users to like and unlike posts.

However, I wasn’t supposed to remove the entry in the database when they

unliked something because, who knows, an analyst might find a correlation

that leads to better profits based on that.

I needed a simple flag that specified the status of the entry, and there’s a

straightforward way to implement the liking functionality with it.

This leads to a more imperative implementation in which we have to make two

queries in most cases and implement more functionality ourselves. It’s closer

to our natural way of thinking - if I were to describe the solution to this

problem verbally, this is what I would probably say.

But an alternative would be to make our database do more work for us and add

a unique index based on the userId and postId .

If we have a unique index on the post and user IDs we can always try to create a

new entity without a check before that. If an entity already exists, we can write

Utilize Without Adding Domain Logic

async function likePost(userId, postId) {

 // Check if the user has already interacted this post.

 const like = await repository.getLike(userId, postId)

 if (like.status === Status.Liked) {

 // Do nothing

 return

 }

 if (like.status === Status.Unliked) {

 // An entry exists but was unliked, so update its status

 return repository.updateLike(userId, postId, 'liked')

 }

 // Create a new entry

 return repository.createLike(userId, postId)

}

an ON CONFLICT clause in the query and update it. This way, we utilize our

database and remove complexity from our application at the same time.

You could argue that having two separate handlers and methods would be a

better design choice, but I’m just trying to illustrate the point.

We can also look for ways to improve how we fetch data. I write code the way I

think about the logic in my head. But instead of firing multiple queries, we

explore nested queries to reduce the calls to the database.

And it’s not only SQL databases that we should aim to take full advantage of.

DynamoDB, for example, has a FilterExpression parameter that allows you to

filter results based on criteria that are not present in its primary index.

async function likePost(userId, postId) {

 // Create an entry or mark it as liked if it already exists

 return repository.markAsLiked(userId, postId)

}

// And we need to add this to our SQL query once we have the unique index

;`

 ...

 ON CONFLICT (user_id, post_id)

 DO UPDATE saved = TRUE,

 ...

`

export const findAll = async () => {

 const result = await DynamoDB.query({

 TableName: 'items',

 FilterExpression: '#status = :status and #deadline > :deadline',

 ExpressionAttributeNames: {

 '#status': 'status',

 '#deadline': 'deadline',

 },

 ExpressionAttributeValues: {

 ':status': 'active',

 ':deadline': new Date().getTime(),

 },

 }).promise()

 return result.Items

}

While this gives you more flexibility, the tricky detail is that filtering happens

only after your data is fetched. This is not different from fetching the results

and filtering them inside your application. It just saves you some keystrokes.

Instead, we should focus on the table’s design and leverage our indexes better

for our access patterns. We can create secondary indexes that allow us to

retrieve data based on different columns.

It’s not always clear where the line stands. In the ON CONFLICT example above,

you could make a point that leaving this logic in the database is breaking the

very rule we’ve been discussing so far. But to me, it all comes down to whether

the database is making decisions of when and how something should be

stored.

It should only act as a holder of information.

So in the example with ON CONFLICT , the database gives us a mechanism to

describe what happens if a record that matches a certain constraint exists.

The Line Between Domain and Utility

export const findAll = async () => {

 const result = await DynamoDB.query({

 TableName: 'items',

 IndexName: 'status-deadline-index',

 KeyConditions: {

 status: {

 ComparisonOperator: 'EQ',

 AttributeValueList: ['active'],

 },

 deadline: {

 ComparisonOperator: 'GT',

 AttributeValueList: [new Date().getTime()],

 },

 },

 }).promise()

 return result.Items

}

We’re not letting any code live in it, and we’re taking full advantage of its

capabilities.

Our main reason to rely on the database to work for us remains - responding

to something happening to the data. To retain the maintainability of our

product, I would implement it entirely in the application, not relying on

database triggers.

Triggers can hide important information about how our domain operates.

Eventually-consistent stores like DynamoDB remain a problem, though. We

can’t rely on a successful response from them to run functionality that expects

the data to be stored because it still may not be present in all partitions.

In most cases, the data will be replicated very fast, but it remains an actual race

condition.

In cases like this, we should try to reduce the exposure of business logic to the

store. In the case of Dynamo, we’ll have to use a trigger to make sure that the

change has been propagated, but we can implement the functionality inside a

lambda function.

I’m sure there are valid cases where moving functionality inside the database is

the only reasonable way to solve a business problem. But in nine out of ten

cases, you’d be better off not doing it.

Utilize the full extent of your database’s capabilities, but don’t put domain

logic in it.

Reacting to Events

The Bottom Line

Get Better at Software Design & Architecture

I send a twice-a-month newsletter about software design and

architecture with a focus on JavaScript. It contains my latest article and

occasionally some useful resources. No spam. Unsubscribe any time.

Subscribe

Not sure? View previous newsletters.

Your Email Address

https://codephilosophy.dev/

Tao of Node

Learn how to build better Node.js applications. A collection of best

practices about architecture, tooling, performance and testing.

https://taoofnode.com/

