
Back

Blog post

dbdev: PostgreSQL
Package Manager
2023-04-14 • 11 minute read

Oliver Rice
Engineering

John Dalton
Product Management Leader @ AWS

Supabase Launch Week 7 Now live

https://supabase.com/blog
https://github.com/olirice
https://github.com/daltjoh-aws
https://supabase.com/launch-week
https://supabase.com/

Today we’re publicly previewing , a

PostgreSQL package manager. At this stage the

package registry is read-only. We've preloaded it with a

handful of packages, or pglets (PostGres appLETs), to

showcase some of the more interesting possibilities.

dbdev fills the same role for PostgreSQL as npm for

JavaScript, pip for Python and cargo for Rust in

that it enables publishing libraries and applications for

repeatable deployment. We'll be releasing the tooling

necessary for third-parties to publish pglets to the

registry once we’ve collected some community

feedback and incorporate any great new ideas. Our

goal is to create an for packaging and

discovering SQL.

The initial preview is compatible with on

the Supabase platform. It can also be installed on any

database.dev

open ecosystem

new projects

https://database.dev/
https://github.com/supabase/dbdev
https://database.new/

PostgreSQL instance that support and

.

Get Started with dbdev

The in-database client is the easiest way to get started.

You can setup the installer by executing the SQL snippet

available at .

Once the dbdev client is present, pglet s can be

installed from the registry as shown below:

You can explore all available pglet s on .

Notice that PostgreSQL sees the

pglet as a native extension, rather than a raw snippet

of SQL. That approach allows us to leverage

PostgreSQL's builtin tooling for extension management.

With our extension installed, you can use it like any

other PostgreSQL extension. Continuing with the

 example, we can call the scatter

function it provides to create an ASCII scatterplot:

pg_tle pgsql-

http

database.dev/installer

-- Load the package from the package index

select

 dbdev.install ('olirice-asciiplot');

-- Enable the extension

create extension "olirice-asciiplot" version '0

database.dev

olirice-asciiplot

olir

ice-asciiplot

select

 scatter(

 val::numeric, -- x

 val::numeric, -- y

 'stonks!', -- title

 15, -- height

 50 -- width

)

from

 generate_series(1,10) z(val);

https://github.com/aws/pg_tle
https://github.com/pramsey/pgsql-http
https://database.dev/installer
https://database.dev/
https://database.dev/olirice/asciiplot
https://database.dev/olirice/asciiplot

PostgreSQL's extension tooling is excellent, but it

predates some practices learned from best-in-class

package indexes like crates.io. To give developers a

more modern development experience, we opted to

layer additional strictness on top of what PostgreSQL

imposes:

Versioning

The extension system has full support for versioning

and migrations. Officially, PostgreSQL has loose

constraints for version names. We made the choice to

enforce a lite version of that

restricts version numbers to major.minor.patch so

authors can communicate bug-fixes, features, and

breaking changes in a familiar way.

Namespaces

Two common challenges faced by package indexes are

name squatting and typo squatting.

/*

 stonks!

--

| *

|

| *

| *

|

| *

|

| *

| *

|

| *

|

| *

| *

*/

Semantic Versioning

Name squatting: reserving names for future use

https://semver.org/

The ethics of name squatting get dicey at scale while

typo squatting is widely viewed as malicious behavior.

To mitigate both issues, all pglet s published to

 are namespaced to their owning

organization or user’s handle. For example a pglet

named was created by the

account olirice under the name index_advisor . If

another user, some_user , forks and republishes the

project, it would be available under some_user-index_

advisor . Problem solved ✅

Running on Supabase

 is not coupled to the Supabase platform.

dbdev can load SQL libraries on any PostgreSQL

instance with the required base extensions. However,

using dbdev in tandem with Supabase yields some

extra possibilities.

Supabase reflects APIs directly from your database’s

structure, so a pglet can contain an entire stateful

application, pre-configured with authentication, REST,

GraphQL, and realtime change data capture all baked

in!

For example, our friends at published a

Supabase backend for their docs search tool that uses a

hybrid of document embeddings and full text search to

find relevant documents for a user’s query

Its available at and here’s

how you’d set it up:

Typo squatting: reserving misspelling of existing

package

database.dev

olirice-index_advisor

database.dev

LangChain

langchain-hybrid_search

select

 dbdev.install ('langchain-hybrid_search');

https://database.dev/
https://database.dev/olirice/index_advisor
https://database.dev/
https://python.langchain.com/en/latest/index.html
https://database.dev/langchain/hybrid_search

That creates the relevant documents table and

associated search functions. Then, you can

immediately hit it from your front end for best-in-class

document search.

Package Highlights

That's it for the announcement, but a package

index is less interesting than what you can do with it! In

create extension if not exists vector;

create extension "langchain-hybrid_search" sche

import { OpenAIEmbeddings } from 'langchain/emb

import { createClient } from '@supabase/supabas

import { SupabaseHybridSearch } from 'langchain

const privateKey = process.env.SUPABASE_PRIVATE

if (!privateKey) throw new Error(`Expected env

const url = process.env.SUPABASE_URL

if (!url) throw new Error(`Expected env var SUP

export const run = async () => {

 const client = createClient(url, privateKey)

 const embeddings = new OpenAIEmbeddings()

 const retriever = new SupabaseHybridSearch(em

 client,

 // Below are the defaults, expecting that

 similarityK: 2,

 keywordK: 2,

 tableName: 'documents',

 similarityQueryName: 'match_documents',

 keywordQueryName: 'kw_match_documents',

 })

 const results = await retriever.getRelevantDo

 console.log(results)

}

dbdev

http://database.new/

that vein, the following highlights a few of packages I

thought were interesting enough to callout:

burggraf-pg_headerkit

 is a toolkit for adding

advanced features to PostgREST APIs (including

Supabase REST):

and more.

For example, you could apply a deny listing to your API

using hdr.in_deny_list() in a row level security

policy or view:

olirice-index_advisor

 is one of the projects we cut

from . It is simple tool that takes a query

and recommends indexes to minimize the “total_cost”

according to the query’s .

We ultimately ran out of time to squeeze the feature

in, but the optimizer works just fine:

burggraf-pg_headerkit

rate limiting

IP allowlisting/denylisting

request logging

select

 *

from

 app.memos

where

 not hdr.in_deny_list ();

olirice-index_advisor

Launch Week 7

explain plan

select dbdev.install('olirice-index_advisor');

create extension if not exists hypopg;

create extension "olirice-index_advisor";

https://database.dev/burggraf/pg_headerkit
https://database.dev/olirice/index_advisor
https://supabase.com/launch-week
https://www.postgresql.org/docs/current/using-explain.html

which shows

In other words, it recommends the index CREATE INDEX

ON public.account USING btree (name) which is

expected to reduce the total cost from 25.88 to 6.40

for a 4x decrease.

olirice-index_advisor is compatible with tables,

views, and materialized views. It can also see through

views to find relevant indexes on underlying tables, and

supports generic query arguments. For example, $1 in

select id from account where name = $1 , which

makes it compatible with queries from pg_stat_statem

ents and queries generated by the REST API.

Keep an eye open for it in Launch Week 8.

michelp-adminpack

 is a collection of tools helpful for

administrating your database that we often use

internally at Supabase. It holds views for reviewing

useful info for debugging and optimizing performance

like duplicate indexes, index usage, and table size, to

name a few.

-- Create a dummy table

create table account(

id int primary key,

name text

);

-- Search for indexes to optimize "select id fr

select

*

from

index_advisor($$select id from account wher

| startup_cost_before | startup_cost_after | to

| ------------------- | ------------------ | --

| 0.00 | 1.17 | 25

michelp-adminpack

https://database.dev/michelp/adminpack

For example, to identify potentially unused indexes that

can be dropped, you could use the index_usage view,

which has columns for:

Column Type

schemaname name

tablename name

num_rows bigint

table_size text

index_name name

index_size text

unique text

number_of_scans bigint

tuples_read bigint

tuples_fetched bigint

Limitations

There are several procedural languages (PL) that can be

embedded in PostgreSQL and used to define functions.

The ones that ship with stock PostgreSQL are SQL ,

and pl/pgSQL but there others that can be installed

separately, including pl/v8 for JavaScript, or pl/per

l for Perl. A trusted language has been restricted to

remove potentially hazardous functionality like access

to the network stack and file system. pl/v8 and pl/p

erl are examples of trusted languages. In contrast, p

l/python3u is untrusted.

A is a

, written exclusively using trusted languages.

In some ways that makes them less flexible than classic

Trusted Language Extension (TLE) PostgreSQL

extension

https://github.com/aws/pg_tle
https://www.postgresql.org/docs/current/extend-extensions.html

extensions, which can have C language components

(more on that in a second). The advantage to TLEs is

that they don't require direct access to the PostgreSQL

server’s file system to install. That enables TLEs to be

installed by end-users rather than by database

administrators or hosting providers. TLEs are the

enabling technology that allows a package manager

like dbdev to function on hosted PostgreSQL

platforms like Supabase.

For a more in-depth explanation of Trusted Language

Extensions checkout

 or dive into the code at .

A recent development in the PostgreSQL extension

ecosystem is the 1.0 release of a new trusted language,

, allowing users to define SQL functions

written in Rust. As a compiled language, pl/rust

functions can execute an order of magnitude faster

than pl/pgSQL for computationally heavy workloads.

That closes the biggest capability gap between native

extensions with C components and TLEs. pl/rust

hasn’t released to Supabase yet, but we’re excited

about rolling it out in the coming weeks.

Please Give Feedback

As this is a preview, we anticipate that there may be a

few rough edges. If you do take the time to explore db

dev at this stage, please contribute to its development

at .

We are particularly interested in hearing about:

AWS's pg_tle on Supabase blog

post github.com/aws/pg_tle

pl/rust

github.com/supabase/dbdev

Any issues or bugs you encounter1

Feature requests and suggestions for improvement2

https://aws.amazon.com/blogs/opensource/supabase-makes-extensions-easier-for-developers-with-trusted-language-extensions-for-postgresql/
https://github.com/aws/pg_tle
https://github.com/tcdi/plrust
https://github.com/supabase/dbdev

More Launch Week 7

Contributions in the form of code,

documentation, or testing

3

https://supabase.com/blog/designing-with-ai-midjourney
https://github.com/supabase/supavisor
https://supabase.com/blog/supabase-logs-self-hosted
https://supabase.com/blog/edge-runtime-self-hosted-deno-functions
https://supabase.com/blog/storage-v3-resumable-uploads
https://supabase.com/blog/supabase-auth-sso-pkce
https://supabase.com/blog/launch-week-7-community-highlights
https://supabase.com/blog/supabase-studio-2.0
https://supabase.com/blog/dbdev

Share this article

Last post

Supabase Studio 2.0: help when you need it

most
14 April 2023

Next post

Trusted Language Extensions for Postgres
14 April 2023

Related articles

Supabase Studio 2.0: help when you need it most

dbdev: PostgreSQL Package Manager

Trusted Language Extensions for Postgres

Launch Week 7 Community Highlights

Supabase Auth: SSO, Mobile, and Server-side support

View all posts

Build in a weekend, scale to millions

https://twitter.com/share?text=dbdev:%20PostgreSQL%20Package%20Manager&url=https://supabase.com/blog/dbdev
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/dbdev&title=dbdev:%20PostgreSQL%20Package%20Manager
https://news.ycombinator.com/submitlink?u=https://supabase.com/blog/dbdev&t=dbdev:%20PostgreSQL%20Package%20Manager
https://supabase.com/blog
https://supabase.com/blog/pg-tle

Start your project

Product

Database

Auth

Functions

Realtime

Storage

Pricing

Launch Week 7

Resources

Support

System Status

Integrations

Experts

Brand Assets / Logos

DPA

SOC2

Developers

Documentation

Changelog

Contributing

Open Source

SupaSquad

DevTo

RSS

Company

Blog

Customer Stories

Careers

Company

Terms of Service

Privacy Policy

Acceptable Use Policy

Service Level Agreement

Humans.txt

Lawyers.txt

https://app.supabase.com/
https://supabase.com/
https://twitter.com/supabase
https://github.com/supabase
https://discord.supabase.com/
https://youtube.com/c/supabase
https://supabase.com/database
https://supabase.com/auth
https://supabase.com/edge-functions
https://supabase.com/realtime
https://supabase.com/storage
https://supabase.com/pricing
https://supabase.com/launch-week
https://supabase.com/support
https://status.supabase.com/
https://supabase.com/partners/integrations
https://supabase.com/partners/experts
https://supabase.com/brand-assets
https://supabase.com/legal/dpa
https://forms.supabase.com/soc2
https://supabase.com/docs
https://supabase.com/changelog
https://supabase.com/docs/handbook/contributing
https://supabase.com/oss
https://supabase.com/supasquad
https://dev.to/supabase
https://supabase.com/rss.xml
https://supabase.com/blog
https://supabase.com/customers
https://supabase.com/careers
https://supabase.com/company
https://supabase.com/terms
https://supabase.com/privacy
https://supabase.com/aup
https://supabase.com/sla
https://supabase.com/humans.txt
https://supabase.com/lawyers.txt

Security.txt

© Supabase Inc

https://supabase.com/.well-known/security.txt

