
Yellowbrick (h�ps://yellowbrick.com/) › blog (h�ps://yellowbrick.com/category/blog/) ›

Engineering (h�ps://yellowbrick.com/category/blog/engineering/) ›

The Case of the Exploding COALESCE Statements

The Case of the Exploding
COALESCE Statements

 James Robb (h�ps://yellowbrick.com/author/james-robb/)

 April 10, 2023 (h�ps://yellowbrick.com/2023/04/)

James Robb

(h�ps://yellowbrick.com/author/james-robb/)

Senior Software Engineer

(h�ps://yellowbrick.com)

https://yellowbrick.com/
https://yellowbrick.com/category/blog/
https://yellowbrick.com/category/blog/engineering/
https://yellowbrick.com/author/james-robb/
https://yellowbrick.com/2023/04/
https://yellowbrick.com/author/james-robb/profile/
https://yellowbrick.com/author/james-robb/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/james-

robb/pro�le/)

Introduction

I’d like to take you through an interesting bug I dug into and �xed in my �rst months here at

Yellowbrick. I joined the planning and optimization team about four months ago, which focuses most

of its time on the query-planning component of our core product, the

, a MPP (Massively Parallel Processing) SQL

database. The query planner makes sure queries run quickly, e�iciently, and that the results of a

query are correct.

The bug in question comes from a query that a customer sent to us. The query, when ran, very quickly

caused the database to run out of memory. This was an interesting bug to dive into as a new team

member because it gave me a lot of exposure to the di�erent parts of the stack.

I call this bug the “Case of the Exploding COALESCE” for reasons which I hope will become obvious. In

this blog post, you’ll get a glimpse of the structure of the Yellowbrick stack, and an example of the

abstract problems computer science students learn about manifesting in the real world.

Yellowbrick Data Warehouse

(h�ps://yellowbrick.com/yellowbrick-data-warehouse/)

The Yellowbrick Stack

Before diving into the query that sparked the “Case of the Exploding COALESCE” I’d like to give you a

brief overview of the

 stack. There are three main components to consider:

�. Postgres front-end (forked and heavily modi�ed)

�. Yellowbrick Lime Query Compiler

�. Yellowbrick Workers

When a user submits a query, it �rst lands in Postgres front-end which parses the query and

produces a query plan. That query plan is then serialized and sent o� to Lime. Lime has several jobs,

but in this context, its job is to take the serialized query plan and generate query-speci�c C++ code

that is then compiled and sent to the workers – this all happens on-the-�y. To �nally execute the

query, the workers execute the compiled C++ code and send the results back to the user via Postgres.

Yellowbrick (h�ps://yellowbrick.com/yellowbrick-data-warehouse/technical-

overview/)

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/james-robb/profile/
https://yellowbrick.com/yellowbrick-data-warehouse/
https://yellowbrick.com/yellowbrick-data-warehouse/technical-overview/
https://yellowbrick.com/

There are de�nitely many more moving pieces required to realize the Yellowbrick stack in its entirety,

but we now have the basic prerequisite knowledge of the stack to make sense of the bug and the rest

of this blog post.

The Explosions Begin

Now let’s dive into the query that sparked the investigation. Of course, I can’t share the exact query

submi�ed to us, which was kind of large and di�icult to understand without staring at it for a bit (okay

more than a bit), but I can share a query that captures the exact essence of the problem.

The query contains a lot of COALESCE functions. As a quick reminder, a COALESCE function takes

any number of arguments and returns the �rst non-null argument, and if all arguments are null then

it returns null; it’s a convenient way to encode basic if/else logic where nullness is concerned.

Here is the version of the query I’d like to share with you:

SELECT

 COALESCE(column1, 'default') as field1,

 COALESCE(field1, column2) as field2,

 ...

 COALESCE(field24, column25) as field25

FROM

 some_table;

1

2

3

4

5

6

7

It is important to point out something here that is not seen in many other databases. We can see in

the query that �eld2 expression references �eld1 as part of its de�nition. The only other database I

am aware of that has this convenient syntactic sugar is Teradata

(h�ps://yellowbrick.com)

https://yellowbrick.com/resources/comparisons/stacking-up-versus-teradata
https://yellowbrick.com/

. For clarity, if we had

to write out the de�nition for �eld2 without this syntactic sugar, it would look like this:

(h�ps://yellowbrick.com/resources/comparisons/stacking-up-versus-teradata)

COALESCE(COALESCE(column1, 'default'), column2)');1

It then follows that in the query �eld25 would have COALESCE functions nested 25 layers deep.

When I ran the query the memory the query planner (i.e., Postgres) consumed quickly ballooned and

an OOM (out of memory) event occurred – it didn’t really ma�er how much memory I made available.

Even if I made 256GB of memory available Postgres would still eat through all of it. I honestly didn’t

quite know where to begin at �rst, so I a�ached a debugger and hit pause while I watched Postgres’

memory consumption swell. This wound up being a reasonably e�ective way to get going.

The debugger landed in a function that calculated the common typemod (type modi�er) of the

arguments in a COALESCE function – let’s call it select_common_typemod. If you’ve worked with

SQL, you’ve seen a typemod before. It’s not common terminology though. As a basic example, when

declaring a column as varchar�10� the typemod is 10. The reason we need to calculate the common

typemod is that the arguments to a COALESCE function can have di�erent typemods and we need to

know the largest typemod across them to accurately estimate the memory required to execute a

query. The following is the core of what select_common_typemod does (in pseudo-code):

def select_common_typemod(coalesce_expr):

 typemod = expression_typemod(coalesce_expr.first_arg())

 for arg in coalesce_expr.args():

 typemod = max(typemod, expression_typemod(arg))

 return typemod

1

2

3

4

5

6

7

And expression_typemod is de�ned as:

(h�ps://yellowbrick.com)

https://yellowbrick.com/resources/comparisons/stacking-up-versus-teradata
https://yellowbrick.com/resources/comparisons/stacking-up-versus-teradata
https://yellowbrick.com/

def expression_typemod(expr):

 if type_of_expression(expr) == "coalesce":

 return select_common_typemod(expr)

 # code to calculate the typemod of other expressions

 # for example, a varchar expression

 return -1

1

2

3

4

5

6

7

8

What a place to land because this is where the issue was, though admi�edly I had to stare at it for a

bit. Consider the case where we are evaluating the outer COALESE function in �eld2. When we pass

a COALESCE function to select_common_typemod the �rst thing it does is call

expression_typemod on coalesce_expr‘s �rst argument, which is itself another COALESCE

function and results in another call to select_common_typemod. This is a totally legit way to

traverse through the nested COALESCE functions, but the problem is that we call

expression_typemod a second time on coalesce_expr‘s �rst argument in the loop in

select_common_typemod. This means that for each “layer” of the nested COALESCE functions we

duplicate the number of calls to select_common_typemod (via expression_typemod) which

results in an exponential explosion of function calls.

If we now want to evaluate �eld25, we will need on the order of 2 = 33,554,432 calls to

select_common_typemod! This is a lot of function calls, but the stack doesn’t get too deep at any

given point. The OOM is a result of this large number of function calls and how

. In short, memory allocations are associated with “contexts” in Postgres, and all

allocations associated with a context are automatically cleaned up when a context is freed. The

bene�t here is that a programmer doesn’t need to worry about freeing each allocation as it will be

cleaned up later. In our case there was a single context active for the duration of these roughly 33

million function calls, so even if one allocates just a small amount of memory in each call (which does

happen, but I have excluded it from the pseudo-code) the total memory allocated quickly swells to

whatever the system has available.

25

Postgres handles

memory and garbage collection (h�ps://jnidzwetzki.github.io/2022/05/28/postgres-memory-

context.html)

The Fix (Part 1)

(h�ps://yellowbrick.com)

https://jnidzwetzki.github.io/2022/05/28/postgres-memory-context.html
https://yellowbrick.com/

The �x here was simple. What I did was simply cache the common typemod of a COALESCE function

on its associated data structure. Here is the modi�ed pseudo-code:

def select_common_typemod(coalesce_expr):

 if coalesce_expr.typemod is not None:

 return coalesce.typemod

 typemod = expression_typemod(coalesce_expr.first_arg())

 for arg in coalesce_expr.args():

 typemod = max(typemod, expression_typemod(arg))

 coalesce_expr.typemod = typemod

 return typemod

def expression_typemod(expr):

 if type_of_expression(expr) == "coalesce":

 if expr.typemod is not None:

 return expr.typemod

 return select_common_typemod(expr)

 # code to calculate the typemod of other expressions

 # for example, a varchar expression

 return -1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

With the �x in place, I was ready for happy days. The number of function calls to

select_common_typemod was now linear in the number of coalesce statements. I ran the query

again and… the query failed to execute. Postgres didn’t run out of memory – that issue was �xed. I

began digging into the logs of the rest of the stack and saw that Lime was generating OOM events

now.

The Fix (Part 2)

The Lime logs told me that it was running out of memory during the templating phase of the code

generation. That is, we hadn’t even go�en to the point where we had started to compile the code; we

were generating so much code to compile that we were eating up all of the system’s available

memory.

(h�ps://yellowbrick.com)

https://yellowbrick.com/

This was maybe the second or third time where I needed to poke around in Lime. I �gured this was still

related to the deep-nesting of COALESCE functions so I took a look at how Lime generates code to

represent COALESCE functions. It turns out they were represented as a series of nested if-else

statements. As an example, the following is the pseudo-code for how COALESCE(column1,

column2� was represented:

IF column1.not_null() THEN

 return column1

ELSE

 IF column2.not_null() THEN

 return column2

 ELSE

 return NULL

1

2

3

4

5

6

7

This seemed �ne at �rst glance, but things got a bit hairier when we needed to represent nested

COALESCE functions. To fully appreciate where it gets weird, let’s look at the same pseudo-code as

before, but in its more generic template-like form:

IF (coalesce_argument_1).not_null() THEN

 RETURN (coalesge_argument_1)

ELSE

 (include IF template for coalesge_argument_2)

1

2

3

4

That means the representation of COALESCE�COALESCE(column1, ‘default’), column2� was:

(h�ps://yellowbrick.com)

https://yellowbrick.com/

IF

 (

 IF column1.not_null() THEN

 RETURN column1

 ELSE

 RETURN 'default'

).not_null()

THEN

 IF column1.not_null() THEN

 RETURN column1

 ELSE

 RETURN 'default'

ELSE

 IF column2.not_null THEN

 RETURN column2

 ELSE

 RETURN NULL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

x = (

 IF column1.not_null() THEN

 RETURN column1

 ELSE

 RETURN 'default'

)

IF x.not_null() THEN

 RETURN x

IF column2.not_null() THEN

 RETURN column2

RETURN NULL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Another case of duplication! By outpu�ing the same text in the condition and body of the if

statement, we see yet another exponential explosion, except this time in the amount of text

produced instead of the number of function calls.

(h�ps://yellowbrick.com)

https://yellowbrick.com/

The solution was again straightforward once I could see the issue. I decided to do two things to

remedy the situation: removed the code duplication and unwound the nested if-statements. The

following is what the same COALESCE function looked like after my changes:

With this second �x in place, I ran the query again and… success! I got back the right results quickly

and without generating any OOM events (or any noticeable increase in memory for that ma�er).

Happy days had arrived!

Concluding Thoughts

In solving the “Case of the Exploding COALESCE” we dove into a real-world example of how things

that are hard to see when looking at the source code result in big issues for the “right” input. We

found two instances of logic that led to an exponential blow-up in memory consumption and solved

them with memoization and deduplication, respectively. It turns out the problems we learned about in

our algorithms classes really do pop up in all sorts of places in the wild.

There is one last thing I would also like to talk about. When reading this, one might have asked

themselves, “Who would actually write a query like this?” Who indeed – as it is a bit unusual, at least

to a human. In many instances like this no one did. All sorts of engineers, data scientists, and others

use a variety of tools to generate SQL queries. In previous roles, I’ve worked on projects that use ORMs

and I remember them outpu�ing some pre�y strange SQL at times. Given the strange nature of the

query, I’m tempted to say it was generated by a machine. But at the same time, it used our uncommon

syntactic sugar for referencing previously de�ned �elds. So, I’m not exactly sure, but at the end of

the day, it didn’t really ma�er as it’s something that should have run issue-free irrespective of how it

came to be.

Thanks for reading, and happy coding!

(h�ps://yellowbrick.com/blog/modernization/th-to-analytics-cloud-native-data-warehousing/)‹

Related Posts

 March 2, 2023 (h�ps://yellowbrick.com/2023/03/02/)

Low-level Debugger �LLDB� Extension for Structure Visualization
(h�ps://yellowbrick.com/blog/engineering/lldb-extension-for-structure-
visualization/)

(h�ps://yellowbrick.com/blog/engineering/lldb-extension-for-structure-visualization/)

Engineering (h�ps://yellowbrick.com/category/blog/engineering/)

(h�ps://yellowbrick.com)

https://yellowbrick.com/blog/modernization/still-doing-battle-with-your-monolithic-multi-terabyte-data-warehouse/
https://yellowbrick.com/blog/cloud/a-direct-path-to-analytics-cloud-native-data-warehousing/
https://yellowbrick.com/2023/03/02/
https://yellowbrick.com/blog/engineering/lldb-extension-for-structure-visualization/
https://yellowbrick.com/blog/engineering/lldb-extension-for-structure-visualization/
https://yellowbrick.com/category/blog/engineering/
https://yellowbrick.com/

Read
More

(h�ps://yellowbrick.com/blog/engineering/lldb-extension-for-structure-
visualization/)

 February 27, 2023 (h�ps://yellowbrick.com/2023/02/27/)

Methods and Techniques for Fast and E�icient Logic

Simulation

(h�ps://yellowbrick.com/blog/engineering/methods-and-

techniques-for-fast-and-e�icient-logic-simulation/)

(h�ps://yellowbrick.com/blo

g/engineering/methods-

and-techniques-for-fast-

and-e�icient-logic-

simulation/)

 February 1, 2023 (h�ps://yellowbrick.com/2023/02/01/)

Stories From the Field: The Devil Is In the to_number Details

(h�ps://yellowbrick.com/blog/engineering/stories-from-

the-�eld-the-devil-is-in-the-to_number-details/)

(h�ps://yellowbrick.com/blo

g/engineering/stories-from-

the-�eld-the-devil-is-in-

the-to_number-details/)

Meet Our Authors (/our-authors/)

(h�ps://yellowbrick.com)

https://yellowbrick.com/blog/engineering/lldb-extension-for-structure-visualization/
https://yellowbrick.com/2023/02/27/
https://yellowbrick.com/blog/engineering/methods-and-techniques-for-fast-and-efficient-logic-simulation/
https://yellowbrick.com/blog/engineering/methods-and-techniques-for-fast-and-efficient-logic-simulation/
https://yellowbrick.com/2023/02/01/
https://yellowbrick.com/blog/engineering/stories-from-the-field-the-devil-is-in-the-to_number-details/
https://yellowbrick.com/blog/engineering/stories-from-the-field-the-devil-is-in-the-to_number-details/
https://yellowbrick.com/our-authors/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/alice-

russell/pro�le/)

(h�ps://yellowbrick.com/author/alice-
russell/pro�le/)

Alice
Russell

(h�ps://yellowbrick.com/author/allen-

holmes/pro�le/)

(h�ps://yellowbrick.com/author/allen-
holmes/pro�le/)

Allen
Holmes

(h�ps://yellowbrick.com/author/bob-

rumsby/pro�le/)

(h�ps://yellowbrick.com/author/bob-
rumsby/pro�le/)

Bob
Rumsby

(h�ps://yellowbrick.com/author/bryson-

boatwright/pro�le/)

(h�ps://yellowbrick.com/author/bryson-
boatwright/pro�le/)

Bryson
Boatwright

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/alice-russell/profile/
https://yellowbrick.com/author/alice-russell/profile/
https://yellowbrick.com/author/allen-holmes/profile/
https://yellowbrick.com/author/allen-holmes/profile/
https://yellowbrick.com/author/bob-rumsby/profile/
https://yellowbrick.com/author/bob-rumsby/profile/
https://yellowbrick.com/author/bryson-boatwright/profile/
https://yellowbrick.com/author/bryson-boatwright/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/christopher-

edgar/pro�le/)

(h�ps://yellowbrick.com/author/christopher-
edgar/pro�le/)

Christopher
Edgar

(h�ps://yellowbrick.com/author/container-

environments/pro�le/)

(h�ps://yellowbrick.com/author/container-
environments/pro�le/)

Ryan
Atkinson

(h�ps://yellowbrick.com/author/david-

tran/pro�le/)

(h�ps://yellowbrick.com/author/david-
tran/pro�le/)

David
Tran

(h�ps://yellowbrick.com/author/drew-

gillies/pro�le/)

(h�ps://yellowbrick.com/author/drew-
gillies/pro�le/)

Drew
Gillies

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/christopher-edgar/profile/
https://yellowbrick.com/author/christopher-edgar/profile/
https://yellowbrick.com/author/container-environments/profile/
https://yellowbrick.com/author/container-environments/profile/
https://yellowbrick.com/author/david-tran/profile/
https://yellowbrick.com/author/david-tran/profile/
https://yellowbrick.com/author/drew-gillies/profile/
https://yellowbrick.com/author/drew-gillies/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/gary-

west/pro�le/)

(h�ps://yellowbrick.com/author/gary-
west/pro�le/)

Gary
West

(h�ps://yellowbrick.com/author/hyoun-

park/pro�le/)

(h�ps://yellowbrick.com/author/hyoun-
park/pro�le/)

Hyoun
Park

(h�ps://yellowbrick.com/author/james-

robb/pro�le/)

(h�ps://yellowbrick.com/author/james-
robb/pro�le/)

James
Robb

(h�ps://yellowbrick.com/author/jason-

snodgress/pro�le/)

(h�ps://yellowbrick.com/author/jason-
snodgress/pro�le/)

Jason
Snodgress

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/gary-west/profile/
https://yellowbrick.com/author/gary-west/profile/
https://yellowbrick.com/author/hyoun-park/profile/
https://yellowbrick.com/author/hyoun-park/profile/
https://yellowbrick.com/author/james-robb/profile/
https://yellowbrick.com/author/james-robb/profile/
https://yellowbrick.com/author/jason-snodgress/profile/
https://yellowbrick.com/author/jason-snodgress/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/keerti-

garg/pro�le/)

(h�ps://yellowbrick.com/author/keerti-
garg/pro�le/)

Keerti
Garg

(h�ps://yellowbrick.com/author/kevin-

petrie/pro�le/)

(h�ps://yellowbrick.com/author/kevin-
petrie/pro�le/)

Kevin
Petrie

(h�ps://yellowbrick.com/author/mark-

cusack/pro�le/)

(h�ps://yellowbrick.com/author/mark-
cusack/pro�le/)

Mark
Cusack

(h�ps://yellowbrick.com/author/ma�-

asle�/pro�le/)

(h�ps://yellowbrick.com/author/ma�-
asle�/pro�le/)

Ma�
Asle�

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/keerti-garg/profile/
https://yellowbrick.com/author/keerti-garg/profile/
https://yellowbrick.com/author/kevin-petrie/profile/
https://yellowbrick.com/author/kevin-petrie/profile/
https://yellowbrick.com/author/mark-cusack/profile/
https://yellowbrick.com/author/mark-cusack/profile/
https://yellowbrick.com/author/matt-aslett/profile/
https://yellowbrick.com/author/matt-aslett/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/maxence-

menager/pro�le/)

(h�ps://yellowbrick.com/author/maxence-
menager/pro�le/)

Maxence
Menager

(h�ps://yellowbrick.com/author/mike-

ferguson/pro�le/)

(h�ps://yellowbrick.com/author/mike-
ferguson/pro�le/)

Mike
Ferguson

(h�ps://yellowbrick.com/author/neil-

carson/pro�le/)

(h�ps://yellowbrick.com/author/neil-
carson/pro�le/)

Neil
Carson

(h�ps://yellowbrick.com/author/nick-

cox/pro�le/)

(h�ps://yellowbrick.com/author/nick-
cox/pro�le/)

Nick
Cox

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/maxence-menager/profile/
https://yellowbrick.com/author/maxence-menager/profile/
https://yellowbrick.com/author/mike-ferguson/profile/
https://yellowbrick.com/author/mike-ferguson/profile/
https://yellowbrick.com/author/neil-carson/profile/
https://yellowbrick.com/author/neil-carson/profile/
https://yellowbrick.com/author/nick-cox/profile/
https://yellowbrick.com/author/nick-cox/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/paritosh-

kulkarni/pro�le/)

(h�ps://yellowbrick.com/author/paritosh-
kulkarni/pro�le/)

Paritosh
Kulkarni

(h�ps://yellowbrick.com/author/quality-

engineer/pro�le/)

(h�ps://yellowbrick.com/author/quality-
engineer/pro�le/)

Henry
Cate

(h�ps://yellowbrick.com/author/ramnath-sai-

sagar/pro�le/)

(h�ps://yellowbrick.com/author/ramnath-
sai-sagar/pro�le/)

Ramnath
Sai
Sagar

(h�ps://yellowbrick.com/author/richard-

soundy/pro�le/)

(h�ps://yellowbrick.com/author/richard-
soundy/pro�le/)

Richard
Soundy

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/paritosh-kulkarni/profile/
https://yellowbrick.com/author/paritosh-kulkarni/profile/
https://yellowbrick.com/author/quality-engineer/profile/
https://yellowbrick.com/author/quality-engineer/profile/
https://yellowbrick.com/author/ramnath-sai-sagar/profile/
https://yellowbrick.com/author/ramnath-sai-sagar/profile/
https://yellowbrick.com/author/richard-soundy/profile/
https://yellowbrick.com/author/richard-soundy/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/software-

engineer/pro�le/)

(h�ps://yellowbrick.com/author/software-
engineer/pro�le/)

Morgane
Rouvroy

(h�ps://yellowbrick.com/author/tim-

young/pro�le/)

(h�ps://yellowbrick.com/author/tim-
young/pro�le/)

Tim
Young

(h�ps://yellowbrick.com/author/torben-

mathiasen/pro�le/)

(h�ps://yellowbrick.com/author/torben-
mathiasen/pro�le/)

Torben
Mathiasen

(h�ps://yellowbrick.com/author/umair/pro�le/)

(h�ps://yellowbrick.com/author/umair/pro�le/)
Umair
Wahee

Get the latest Yellowbrick News & Insights

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/software-engineer/profile/
https://yellowbrick.com/author/software-engineer/profile/
https://yellowbrick.com/author/tim-young/profile/
https://yellowbrick.com/author/tim-young/profile/
https://yellowbrick.com/author/torben-mathiasen/profile/
https://yellowbrick.com/author/torben-mathiasen/profile/
https://yellowbrick.com/author/umair/profile/
https://yellowbrick.com/author/umair/profile/
https://yellowbrick.com/

(h�ps://yellowbrick.com/author/workloadmanagement/pro�le/)

(h�ps://yellowbrick.com/author/workloadmanagement/pro�le/)
Kurt
Westerfeld

(h�ps://yellowbrick.com/author/yellowbrick/pro�le/)

(h�ps://yellowbrick.com/author/yellowbrick/pro�le/)Y

Enter Business Email*

protected by reCAPTCHA
Privacy - Terms

This reCAPTCHA is for testing purposes only. Please report to the
site admin if you are seeing this.

Subscribe

Product (/yellowbrick-data-warehouse/)

Why Yellowbrick(h�ps://yellowbrick.com/why-yellowbrick/)

 Yellowbrick April 12, 2023

A “Direct” Path to Analytics: Cloud-Native Data
Warehousing
h�ps://youtu.be/1fBkyl1fmII In today’s data-driven world, businesses are grappling with vast...

 James Robb April 10, 2023

The Case of the Exploding COALESCE Statements
IntroductionI’d like to take you through an interesting bug I...

 Umair Waheed April 7, 2023

Still Doing Ba�le With Your Monolithic Multi-terabyte
Data...
The Challenges of Running a Monolithic Multi-terabyte Data Warehouse Are...

(h�ps://yellowbrick.com/blog/cloud/a-direct-path-to-analytics-cloud-native-data-warehousing/)

(h�ps://yellowbrick.com/blog/engineering/the-case-of-the-exploding-coalesce/)

(h�ps://yellowbrick.com/blog/modernization/still-doing-ba�le-with-your-monolithic-multi-terabyte-

data-warehouse/)

Cloud (h�ps://yellowbrick.com/category/blog/cloud/)

Engineering (h�ps://yellowbrick.com/category/blog/engineering/)

Modernization (h�ps://yellowbrick.com/category/blog/modernization/)

(h�ps://yellowbrick.com)

https://yellowbrick.com/author/workloadmanagement/profile/
https://yellowbrick.com/author/workloadmanagement/profile/
https://yellowbrick.com/author/yellowbrick/profile/
https://yellowbrick.com/author/yellowbrick/profile/
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/
https://yellowbrick.com/yellowbrick-data-warehouse/
https://yellowbrick.com/why-yellowbrick/
https://yellowbrick.com/blog/cloud/a-direct-path-to-analytics-cloud-native-data-warehousing/
https://yellowbrick.com/blog/engineering/the-case-of-the-exploding-coalesce/
https://yellowbrick.com/blog/modernization/still-doing-battle-with-your-monolithic-multi-terabyte-data-warehouse/
https://yellowbrick.com/category/blog/cloud/
https://yellowbrick.com/category/blog/engineering/
https://yellowbrick.com/category/blog/modernization/
https://yellowbrick.com/

Yellowbrick Data Warehouse (h�ps://yellowbrick.com/yellowbrick-data-warehouse/)
New

Technical Overview

(h�ps://yellowbrick.com/yellowbrick-data-warehouse/technical-overview/)

Product Advantages

(h�ps://yellowbrick.com/yellowbrick-data-warehouse/product-advantages/)

Pricing(h�ps://yellowbrick.com/yellowbrick-data-warehouse/pricing/)

Customers(h�ps://yellowbrick.com/yellowbrick-customers/)

Solutions (/modernize-your-database/)

Modernize Your Databases(h�ps://yellowbrick.com/modernize-your-database/)

Embrace the Cloud(h�ps://yellowbrick.com/embrace-the-cloud/)

Control Spend(h�ps://yellowbrick.com/reduce-cloud-data-warehouse-costs/)

Financial Services(h�ps://yellowbrick.com/�nancial-services/)

Hedge Funds(h�ps://yellowbrick.com/hedge-funds/)

Insurance(h�ps://yellowbrick.com/insurance/)

Telecommunications(h�ps://yellowbrick.com/telecommunications/)

Resources (/resources/)

Resource Library(/resources/)

Blog(h�ps://yellowbrick.com/resources/blog/)

Events(h�ps://yellowbrick.com/resources/events/)

Product Documentation(h�ps://yellowbrick.com/resources/product-documentation/)

Customer Center

(h�ps://support.yellowbrick.com/hc/en-us/restricted?

return_to=h�ps%3A%2F%2Fsupport.yellowbrick.com%2Fhc%2Fen-us)

Brand Standards(h�ps://yellowbrick.com/brand-standards/)

Partners (/yellowbrick-partners)

Partners(h�ps://yellowbrick.com/yellowbrick-partners/)

(h�ps://yellowbrick.com)

https://yellowbrick.com/yellowbrick-data-warehouse/
https://yellowbrick.com/yellowbrick-data-warehouse/technical-overview/
https://yellowbrick.com/yellowbrick-data-warehouse/product-advantages/
https://yellowbrick.com/yellowbrick-data-warehouse/pricing/
https://yellowbrick.com/yellowbrick-customers/
https://yellowbrick.com/modernize-your-database/
https://yellowbrick.com/modernize-your-database/
https://yellowbrick.com/embrace-the-cloud/
https://yellowbrick.com/reduce-cloud-data-warehouse-costs/
https://yellowbrick.com/financial-services/
https://yellowbrick.com/hedge-funds/
https://yellowbrick.com/insurance/
https://yellowbrick.com/telecommunications/
https://yellowbrick.com/resources/
https://yellowbrick.com/resources/
https://yellowbrick.com/resources/blog/
https://yellowbrick.com/resources/events/
https://yellowbrick.com/resources/product-documentation/
https://support.yellowbrick.com/hc/en-us/restricted?return_to=https%3A%2F%2Fsupport.yellowbrick.com%2Fhc%2Fen-us
https://yellowbrick.com/brand-standards/
https://yellowbrick.com/yellowbrick-partners
https://yellowbrick.com/yellowbrick-partners/
https://yellowbrick.com/

Partner Portal(h�ps://yellowbrick.channeltivity.com/Login)

Become a Partner

(h�ps://yellowbrick.com/yellowbrick-partners/become-a-yellowbrick-partner/)

Company (/about-yellowbrick/)

About Yellowbrick(h�ps://yellowbrick.com/about-yellowbrick/)

Press Releases(h�ps://yellowbrick.com/about-yellowbrick/press-releases/)

In the News(h�ps://yellowbrick.com/about-yellowbrick/in-the-news/)

Careers(h�ps://yellowbrick.com/careers/)

Contact Us(h�ps://yellowbrick.com/about-yellowbrick/contact-us-at-yellowbrick/)

(h�ps://yellowbrick.com)

US

Phone

US Headquarters

660 W. Dana Street

Mountain View, CA 94041

877.492.3282 (tel:8774923282�

info@yellowbrick.com (mailto:info@yellowbrick.com?subject=Yellowbrick Website Inquiry)

sales@yellowbrick.com (mailto:sales@yellowbrick.com?subject=Yellowbrick Website Inquiry)

International

Phone

Europe Headquarters

60 Trafalgar Square

London, WC2N 5DS UK

+1.650.687.0896 (tel:16506870896�

info@yellowbrick.com (mailto:info@yellowbrick.com?subject=Yellowbrick Website Inquiry)

sales@yellowbrick.com (mailto:sales@yellowbrick.com?subject=Yellowbrick Website Inquiry)

(h�ps://yellowbrick.com)

https://yellowbrick.channeltivity.com/Login
https://yellowbrick.com/yellowbrick-partners/become-a-yellowbrick-partner/
https://yellowbrick.com/about-yellowbrick/
https://yellowbrick.com/about-yellowbrick/
https://yellowbrick.com/about-yellowbrick/press-releases/
https://yellowbrick.com/about-yellowbrick/in-the-news/
https://yellowbrick.com/careers/
https://yellowbrick.com/about-yellowbrick/contact-us-at-yellowbrick/
https://yellowbrick.com/
tel:8774923282
mailto:info@yellowbrick.com?subject=Yellowbrick%20Website%20Inquiry
mailto:sales@yellowbrick.com?subject=Yellowbrick%20Website%20Inquiry
tel:16506870896
mailto:info@yellowbrick.com?subject=Yellowbrick%20Website%20Inquiry
mailto:sales@yellowbrick.com?subject=Yellowbrick%20Website%20Inquiry
https://yellowbrick.com/

Available On:

(h�ps://aws.amazon.com/marketplace/pp/prodview-

qovhbunvu3q4y?sr=0-

1&ref_=beagle&applicationId=AWSMPContessa)

© 2023 Yellowbrick Data, Inc.

All Rights Reserved. Terms and Privacy Policy. (h�ps://yellowbrick.com/yellowbrick-terms-and-privacy-policy/)
(h�
ps:/
/twi
�er.
co
m/y
ello
wbr
ick
dat
a)

(h�
ps:/
/ww
w.li
nke
din.
co
m/c
om
pan
y/y
ello
wbri
ckd
ata
/)

(h�ps://yellowbrick.com)

https://aws.amazon.com/marketplace/pp/prodview-qovhbunvu3q4y?sr=0-1&ref_=beagle&applicationId=AWSMPContessa
https://yellowbrick.com/yellowbrick-terms-and-privacy-policy/
https://twitter.com/yellowbrickdata
https://www.linkedin.com/company/yellowbrickdata/
https://yellowbrick.com/

