
supabase / supavisor Public

A cloud-native, multi-tenant Postgres connection pooler.

 Apache-2.0 license

 161 stars 1 fork

View code

Supavisor - Postgres connection pooler
Overview

Motivation

Architecture

Docs

Features

Future work

Acknowledgements

 Star Notifications

Code Issues 4 Pull requests 1 Actions Projects Wiki Security Ins

 main Go to file

awalias Update README.md … 1 hour ago 77

README.md

https://github.com/supabase
https://github.com/supabase/supavisor
https://github.com/supabase/supavisor/blob/main/LICENSE
https://github.com/supabase/supavisor/stargazers
https://github.com/supabase/supavisor/forks
https://github.com/supabase/supavisor/blob/main/docs/images/supavisor-banner.png
https://github.com/login?return_to=%2Fsupabase%2Fsupavisor
https://github.com/login?return_to=%2Fsupabase%2Fsupavisor
https://github.com/supabase/supavisor
https://github.com/supabase/supavisor/issues
https://github.com/supabase/supavisor/pulls
https://github.com/supabase/supavisor/actions
https://github.com/supabase/supavisor/projects
https://github.com/supabase/supavisor/wiki
https://github.com/supabase/supavisor/security
https://github.com/supabase/supavisor/pulse
https://github.com/supabase/supavisor/find/main
https://github.com/supabase/supavisor/commits?author=awalias
https://github.com/supabase/supavisor/commit/f7a829571af43a083f6113e82a797dc889c02eb0
https://github.com/supabase/supavisor/commit/f7a829571af43a083f6113e82a797dc889c02eb0
https://github.com/supabase/supavisor/commits/main
https://github.com/awalias

Benchmarks

Inspiration

Overview

Supavisor is a scalable, cloud-native Postgres connection pooler. A Supavisor cluster is capable of
proxying millions of Postgres end-client connections into a stateful pool of native Postgres database
connections.

For database managers, Supavisor simplifies the task of managing Postgres clusters by providing
easy configuration of highly available Postgres clusters (todo).

Motivation

We have several goals with Supavisor:

Zero-downtime scaling: we want to scale Postgres server compute with zero-downtime. To do
this, we need an external Pooler that can buffer and re-route requests while the resizing
operation is in progress.

Handling modern connection demands: We need a Pooler that can absorb millions of
connections. We often see developers connecting to Postgres from Serverless environments,
and so we also need something that works with both TCP and HTTP protocols.

Efficiency: Our customers pay for database processing power, and our goal is to maximize their
database capacity. While PgBouncer is resource-efficient, it still consumes some resources on
the database instance. By moving connection pooling to a dedicated cluster adjacent to tenant
databases, we can free up additional resources to better serve customer queries.

Architecture

Supavisor was designed to work in a cloud computing environment as a highly available cluster of
nodes. Tenant configuration is stored in a highly available Postgres database. Configuration is loaded
from the Supavisor database when a tenant connection pool is initiated.

Connection pools are dynamic. When a tenant client connects to the Supavisor cluster the tenant
pool is started and all connections to the tenant database are established. The process ID of the new
tenant pool is then distributed to all nodes of the cluster and stored in an in-memory key-value store.
Subsequent tenant client connections live on the inbound node but connection data is proxied from
the pool node to the client connection node as needed.

Because the count of Postgres connections is constrained only one tenant connection pool should be
alive in a Supavisor cluster. In the case of two simultaneous client connections starting a pool, as the
pool process IDs are distributed across the cluster, eventually one of those pools is gracefully
shutdown.

The dynamic nature of tenant database connection pools enables high availability in the event of
node outages. Pool processes are monitored by each node. If a node goes down that process ID is
removed from the cluster. Tenant clients will then start a new pool automatically as they reconnect to
the cluster.

This design enables blue-green or rolling deployments as upgrades require. A single VPC / multiple
availability zone topologies is possible and can provide for greater redundancy when load balancing
queries across read replicas are supported (todo).

https://user-images.githubusercontent.com/8291514/230757493-669bf563-084c-4705-b22e-38d398f4ec05.svg#gh-light-mode-only

Docs

Installation and usage

Metrics

Features

Fast
Within 90% throughput as compared to PgBouncer running pgbench locally

Scalable
1 million Postgres connections on a cluster

250_000 idle connections on a single 16 core node with 64GB of ram

Multi-tenant
Connect to multiple different Postgres instances/clusters

Single-tenant
Easy drop-in replacement for PgBouncer

Pool mode support per tenant
Transaction

Cloud-native
Cluster-able

Resilient during cluster resizing

Supports rolling and blue/green deployment strategies

NOT run in a serverless environment

NOT dependant on Kubernetes

Observable
Easily understand throughput by tenant, tenant database or individual connection

Prometheus /metrics endpoint

Manageable
OpenAPI spec at /api/openapi

SwaggarUI at /swaggerui

Highly available
When deployed as a Supavisor cluster and a node dies connection pools should be quickly
spun up or already available on other nodes when clients reconnect

Connection buffering
Brief connection buffering for transparent database restarts or failovers

Future Work

Load balancing
Queries can be load balanced across read-replicas

https://github.com/supabase/supavisor/wiki/Installation-and-Usage
https://github.com/supabase/supavisor/wiki/Metrics

Load balancing is independant of Postgres high-availability management (see below)

Query caching
Query results are optionally cached in the pool cluster and returned before hitting the tenant
database

Session pooling
Like PgBouncer

Multi-protocol Postgres query interface
Postgres binary

HTTPS

Websocket

Postgres high-availability management
Primary database election on primary failure

Health checks

Push button read-replica configuration

Config as code
Not noly for the supavisor cluster but tenant databases and tenant database clusters as well

Pulumi / terraform support

Benchmarks

Local Benchmarks

Running pgbench on PgBouncer (transaction mode/pool size 60)

Running pgbench on Supavisor (pool size 60, no logs)

PGPASSWORD=postgres pgbench -M extended --transactions 100 --jobs 10 --client 100 -h

localhost -p 6452 -U postgres postgres
pgbench (15.2, server 14.6 (Debian 14.6-1.pgdg110+1))

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1

query mode: extended

number of clients: 100

number of threads: 10
maximum number of tries: 1

number of transactions per client: 100

number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)

latency average = 510.310 ms

initial connection time = 31.388 ms

tps = 195.959361 (without initial connection time)

Load Test

PGPASSWORD=postgres pgbench -M extended --transactions 100 --jobs 10 --client 100 -h

localhost -p 7654 -U postgres.localhost postgres
pgbench (15.2, server 14.6 (Debian 14.6-1.pgdg110+1))

starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1
query mode: extended

number of clients: 100

number of threads: 10
maximum number of tries: 1

number of transactions per client: 100

number of transactions actually processed: 10000/10000
number of failed transactions: 0 (0.000%)

latency average = 528.463 ms

initial connection time = 178.591 ms

tps = 189.228103 (without initial connection time)

https://github.com/supabase/supavisor/blob/main/docs/images/load-test-vus.png

Supavisor two node cluster
64vCPU / 246RAM

Ubuntu 22.04.2 aarch64

1_003_200 concurrent client connection

20_000+ QPS

400 tenant Postgres connection

select * from (values (1, 'one'), (2, 'two'), (3, 'three')) as t (num,letter);

~50% CPU utilization (pool owner node)

7.8G RAM usage

Acknowledgements

José Valim and the Dashbit team were incredibly helpful in informing the design decisions for
Supavisor.

Inspiration

PgBouncer

https://github.com/supabase/supavisor/blob/main/docs/images/load-test-qps.png
https://github.com/josevalim
https://dashbit.co/
https://www.pgbouncer.org/

stolon

pgcat

odyssey

crunchy-proxy

pgpool

pgagroal

Commercial Inspiration

proxysql.com

Amazon RDS Proxy

Google Cloud SQL Proxy

Releases 1

v0.1.0 Latest

2 days ago

Sponsor this project

supabase Supabase

Learn more about GitHub Sponsors

Packages

No packages published

Contributors 8

Languages

Elixir 94.2% HTML 2.4% Dockerfile 1.8% Other 1.6%

 Sponsor

https://github.com/sorintlab/stolon
https://github.com/levkk/pgcat
https://github.com/yandex/odyssey
https://github.com/CrunchyData/crunchy-proxy
https://www.pgpool.net/mediawiki/index.php/Main_Page
https://github.com/agroal/pgagroal
https://proxysql.com/
https://aws.amazon.com/rds/proxy/
https://github.com/GoogleCloudPlatform/cloud-sql-proxy
https://github.com/supabase/supavisor/releases
https://github.com/supabase/supavisor/releases/tag/v0.1.0
https://github.com/supabase
https://github.com/supabase
https://github.com/sponsors
https://github.com/orgs/supabase/packages?repo_name=supavisor
https://github.com/supabase/supavisor/graphs/contributors
https://github.com/abc3
https://github.com/chasers
https://github.com/wojtekmach
https://github.com/kiwicopple
https://github.com/philss
https://github.com/awalias
https://github.com/josevalim
https://github.com/MildTomato
https://github.com/supabase/supavisor/search?l=elixir
https://github.com/supabase/supavisor/search?l=html
https://github.com/supabase/supavisor/search?l=dockerfile
https://github.com/sponsors/supabase

