
Alex Saveau
Build better tooling

Blog

Fast Unix Commands
The world's fastest rm command and one of the fastest cp commands
Published Mar 24, 2023 • Last updated Mar 28, 2023 • 3 min read

Fast Unix Commands (FUC) is a project that aims to create the world’s fastest

Unix commands. Currently, this means rm and cp replacements named rmz and

cpz (the ‘z’ stands for “zippy”). When better performance cannot be achieved, the

next highest priority is efficiency. In practice, rmz appears to be the fastest file

deleter available while cpz wins in most cases, only losing in flat directory

hierarchies.

Myth busting
Many Stack Overflow answers will tell you to use this or that as a faster alternative

to rm or cp . Let’s look at the data!

Rsync

Using rsync for copying is always slower than cp as far as I can tell. This should

not come as a surprise given that it performs data integrity checks. Interestingly

enough, rsync deletes very large directories faster than rm , but is slower in all

other cases.

Find

f�nd and rm are approximately equivalent in terms of performance.

Tar

https://alexsaveau.dev/
https://alexsaveau.dev/blog
https://github.com/SUPERCILEX/fuc
https://github.com/SUPERCILEX/fuc/tree/master/comparisons

Shockingly, collecting a directory into a tarball and then extracting it into a new

directory to copy it is often faster than cp .

Technical overview
Both tools are built using the same scheduling algorithm, following similar

principles to FTZZ’s scheduler. The key insight is that file operations in separate

directories don’t (for the most part) interfere with each other, enabling parallel

execution. The intuition here is that directories are a shared resource for their

direct children and must therefore serialize concurrent directory-modifying

operations, causing contention. In brief, file creation or deletion cannot occur at

the same time within one directory. Thus, the goal is to schedule one task per

directory and execute each task in parallel.

Doing this for copies is relatively easy: iterate through every directory, spawn a new

task when a directory is encountered and copy files in place. File removal is far

more interesting because you cannot remove a directory until all of its children

(including subdirectories) have been fully removed. As a consequence, file removal

tasks must wait until their children have completed before finally removing the

current directory. Unfortunately, this approach is slow: memory and time must be

spent keeping track of child tasks, and children must somehow notify their parents

of completion.

Flipping the problem on its head reveals a beautiful solution: what if children were

in charge of deleting their parents? With a little bit of atomic reference counting,

this solution is straightforward to implement and comes at almost no additional

cost. While traversing directories, each spawned child directory task includes a

parent (smart) pointer, implicitly creating a dynamic tree structure that models the

directory hierarchy. These parent pointers are reference counted and trigger the

directory deletion when fully freed. Additionally, each task decrements its reference

count upon completion. That’s it! Now, regardless of whether a parent finishes

after all of its children or vice versa, the last “user” of a directory will delete its

directory chain.

https://alexsaveau.dev/blog/ftzz-overview#scheduling-algorithm

Pseudocode might make this clearer:

def delete_dir(node @ Node { dir, parent, ref_count }, task_queue)�

for f�le in dir:

if f�le is dir:

ref_count��

task_queue.spawn(new Node { dir: f�le, parent: node, ref_count:

else:

f�le.delete()

ref_count��

while node.ref_count �� 0�

node.dir.delete()

node = node.parent

node.ref_count��

Enjoy blazing fast copies and deletions! 🚀

Appendix—directory contention benchmark

��

This benchmark creates and then deletes ~16K f�les in N directories with tw

zip=every thread creates/deletes its own directory

chain=every thread creates/deletes a sub�set of the directory, one director

$ cargo b ��release

$ cp target/release/test test

$ hyperf�ne ��warmup 3 -N "./test /var/tmp 8 zip" "./test /var/tmp 8 chain"

Benchmark 1� ./test /var/tmp 8 zip

 Time (mean ± σ)� 528.5 ms ± 11.5 ms [User: 131.0 ms, System: 3460

 Range (min … max)� 518.6 ms … 553.2 ms 10 runs

Benchmark 2� ./test /var/tmp 8 chain

 Time (mean ± σ)� 1.488 s ± 0.140 s [User: 0.143 s, System: 7.991

 Range (min … max)� 1.297 s … 1.659 s 10 runs

Summary

 './test /var/tmp 8 zip' ran

 2.82 ± 0.27 times faster than './test /var/tmp 8 chain'

��

use std��{

env,

fs��{create_dir, remove_dir, remove_f�le, File},

io,

path��PathBuf,

thread,

};

const FILES� usize = 1 �� 14;

fn main() {

let arg = |n| env��args().nth(n).unwrap();

let root = PathBuf��from(arg(1));

let n: usize = arg(2).parse().unwrap();

let method = arg(3);

let dirs = (0��n)

.map(|i| {

let dir = root.join(format!("test{i}"));

create_dir(&dir).unwrap();

dir

})

.collect��<Vec<_��();

let run = {

assert_eq!(FILES % n, 0);

let batch_size = FILES / n;

let dirs = dirs.clone();

move |op: fn(PathBuf) �� io��Result<()>, id: usize| match &*method

"zip" �� {

for i in 0��FILES {

op(dirs[id].join(format!("f{i}"))).unwrap();

}

}

"chain" �� {

for dir in dirs {

let start = batch_size * id;

for i in start��(start + batch_size) {

op(dir.join(format!("f{i}"))).unwrap();

}

}

}

_ �� {

unreachable!()

}

}

};

let bench = |op| {

(0��n)

.map(|id| {

thread��spawn({

let run = run.clone();

move �� run(op, id)

})

})

.collect��<Vec<_��()

.into_iter()

.map(|task| task.join().unwrap())

.for_each(drop);

};

bench(|arg| File��create(arg).map(drop));

bench(remove_f�le);

for dir in dirs {

remove_dir(dir).unwrap();

}

}

Copyright © 2018-2023 Alex Saveau Source | Twitter | Back to top

https://github.com/SUPERCILEX/personal-website
https://twitter.com/SUPERCILEX

