
It's the easiest thing in the world to put a timestamp on a column and track when

events like new records or recent changes happen, but what about reporting?

Binning data for large data sets like time series is a great way to let you group data

sets by obvious groups and then use SQL to pull out a query that easily works in a

graph.

Here's some PostgreSQL secrets that you can use to build up complete reports of

time-based data.

Earthquake Data

Postgres Tutorials

Easy PostgreSQL Time Bins

Paul Ramsey

Mar 16, 2023 · 7 min read

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/blog/topic/postgres-tutorials
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/
https://www.crunchydata.com/privacy

Earthquakes are a natural source of time-stamped data, and Crunchy Bridge gives us

access to PL/Python. This data has a geometry column, so I'll also add PostGIS.

CREATE EXTENSION plpython3u;
CREATE EXTENSION postgis;

Our target table is just a few interesting columns for each quake.

CREATE TABLE quakes (
 mag float8,
 place text,
 ts timestamptz,
 url text,
 id text,
 geom geometry(pointz, 4326)
);

To populate the table, we pull the live earthquake feed published by the USGS.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.postgresql.org/docs/current/plpython.html
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_hour.geojson
https://www.crunchydata.com/privacy

CREATE OR REPLACE FUNCTION fetch_quakes()
RETURNS setof quakes
AS $$
 import requests
 import json
 url = 'https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_month
 r = requests.get(url)
 quakes = r.json()

 for q in quakes['features']:
 q_id = q['id']
 props = q['properties']
 geojson = json.dumps(q['geometry'])
 epoch = props['time']
 q_ts = plpy.execute(f"SELECT to_timestamp({epoch}/1000.0) AS t")[0
 q_geom = plpy.execute(f"SELECT st_geomfromgeojson('{geojson}') AS g"
 q_mag = props['mag']
 q_url = props['url']
 q_place = props['place']

 plpy.debug(f'quake at {q_place}, magnitude {q_mag}, time {q_ts}')
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

 yield (q_mag, q_place, q_ts, q_url, q_id, q_geom)

$$
LANGUAGE 'plpython3u';

And populating the table is then just a simple refresh and load.

TRUNCATE quakes;
INSERT INTO quakes SELECT * FROM fetch_quakes();

Simple Summaries

One month of quakes of all sizes is a table of a few thousand records. (The answer

will vary depending on when you run the query, since the input is live.)

-- 11791
SELECT Count(*)
FROM quakes;

Where the data support it, running grouped aggregates off of rounded results is a

good way to generate a summary. Here's the summary of magnitudes, using the

floor() function to turn the distinct floating point magnitudes into groupable

integers.

SELECT floor(mag) AS mags,
 Count(*)
FROM quakes
GROUP BY mags
ORDER BY mags;

There's only been a handful of quakes above magnitude 6 in the last month.
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

 mags | count

------+-------

 -2 | 4

 -1 | 719

 0 | 2779

 1 | 5252

 2 | 1676

 3 | 342

 4 | 849

 5 | 142

 6 | 13

Histogram Summaries

Let's look at magnitude 6 quakes.

SELECT ts::date AS date, count(*)
FROM quakes q
WHERE q.mag > 6
GROUP BY date

 date | count

------------+-------

 2023-02-15 | 1

 2023-02-17 | 1

 2023-02-20 | 1

 2023-02-23 | 2

 2023-02-25 | 1This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

 2023-03-01 | 1

 2023-03-02 | 1

 2023-03-04 | 1

 2023-03-14 | 1

To build a good histogram, you need a value for every category in your binning of the

raw data. Unfortunately, the quake data are sparse: there isn't a result for every day

of the last month.

There's a couple ways to solve this problem.

Since we are binning by date, we can take a list of all dates in our range, and left join

the counts to that list. Dates without counts will get NULL counts, but we can use

Coalesce() to convert those to zeroes.

WITH counts AS (
 SELECT ts::date AS date, count(*)
 FROM quakes q
 WHERE q.mag > 6
 GROUP BY date
)
SELECT series::date, coalesce(counts.count, 0)
FROM generate_series('2023-02-13'::date, '2023-03-14'::date, '1 day'::interval
LEFT JOIN counts
ON counts.date = series;

Your result will start like this:

 series | coalesce

------------+----------

 2023-02-13 | 0

 2023-02-14 | 0

 2023-02-15 | 1
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

 2023-02-16 | 0

 2023-02-17 | 1

The magic ingredient here is the generate_series() function. It is usually used to

generate sets of integers, but it will also generate sets of timestamps, or dates, or

floats, as long as you provide a third parameter, the distance between each element.

In this example, we generated using a one day interval.

Timestamp Bins

In PostgreSQL 14 and higher, there is a new date_bin() function for rounding

timestamps to any stride, so you aren't restricted to just rounding to days or years or

months.

Replacing the cast to date with date_bin() and ensuring that generate_series()

shares the same stride and start time as date_bin() our SQL looks almost the

same.

WITH counts AS (
 SELECT date_bin('2.5 days'::interval, ts, '2023-02-13'::timestamp), count(
 FROM quakes q
 WHERE q.mag > 6
 GROUP BY date_bin
)
SELECT series, coalesce(counts.count, 0) AS count
FROM generate_series('2023-02-13'::timestamp, '2023-03-14'::timestamp, '2.5 da
LEFT JOIN counts
ON counts.date_bin = series;

 series | count

---------------------+----------
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-BIN
https://www.crunchydata.com/privacy

 2023-02-13 00:00:00 | 1

 2023-02-15 12:00:00 | 2

 2023-02-18 00:00:00 | 0

 2023-02-20 12:00:00 | 1

 2023-02-23 00:00:00 | 2

 2023-02-25 12:00:00 | 1

 2023-02-28 00:00:00 | 1

 2023-03-02 12:00:00 | 2

 2023-03-05 00:00:00 | 0

 2023-03-07 12:00:00 | 0

 2023-03-10 00:00:00 | 0

 2023-03-12 12:00:00 | 1

And the result is a complete set of counts for this add 2.5 day stride.

Arbitrary Bins of Any Size

What if we want to summarize using a bin layout that doesn't neatly align with the

rounding of a particular type? What about magnitude 6 earthquakes by week? Or in

an irregular set of bins.

We can generate the bins easily enough with generate_series() . Note that we

could also manually construct an array of irregularly spaced bin boundaries if

we wanted.

SELECT array_agg(a) AS bins
FROM generate_series(
 '2023-02-13'::date,
 '2023-03-14'::date,
 '1 week'::interval) a;

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

Fortunately there is another PostgreSQL function to make use of the bins array,

width_bucket() . We can feed our bins into width_bucket() as an array to get

back counts in each bucket.

WITH a AS (
 SELECT array_agg(a) AS bins
 FROM generate_series(
 '2023-02-13'::date,
 '2023-03-14'::date,
 '1 week'::interval) a
),
counts AS (
 SELECT
 width_bucket(ts, a.bins) AS bin,
 Count(*) AS count
 FROM quakes
 CROSS JOIN a
 WHERE mag > 6
 GROUP BY bin
)
SELECT * FROM counts;

This is extremely flexible, as the bin widths can be any interval at all, or a mixed

collection of widths: a week, 2 days, 47 hours, whatever.

However, the query result isn't very informative.

 bin | count

-----+-------

 1 | 3

 2 | 4

 3 | 3

 5 | 1

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

We have the bin number and the count, but we have lost the information about the bin

boundaries, and also we have a missing zero count for bin 4.

To get back the bin boundaries, we reach back to the array we initially generated, and

unnest() it. To get the bin numbers at the same time, we use the WITH

ORDINALITY keywords.

WITH a AS (
 SELECT array_agg(a) AS bins
 FROM generate_series(
 '2023-02-13'::date,
 '2023-03-14'::date,
 '1 week'::interval) a
),
counts AS (
 SELECT
 width_bucket(ts, a.bins) AS bin,
 Count(*) AS count
 FROM quakes
 CROSS JOIN a
 WHERE mag > 6
 GROUP BY bin
)
SELECT
 b.elem AS bin_min,
 b.bin,
 Coalesce(counts.count, 0) AS count
FROM a
CROSS JOIN unnest(bins) WITH ORDINALITY AS b(elem, bin)
LEFT JOIN counts ON b.bin = counts.bin;

The final result is ready for charting!

 bin_min | bin | count

------------------------+-----+-------

 2023-02-13 00:00:00+00 | 1 | 3

 2023-02-20 00:00:00+00 | 2 | 4

 2023-02-27 00:00:00+00 | 3 | 3
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.crunchydata.com/privacy

 2023-03-06 00:00:00+00 | 4 | 0

 2023-03-13 00:00:00+00 | 5 | 1

We have a count for every bin, and a bottom value for every bin. Tinker with this query

and adjust the bin width at the top, to see how flexible PostgreSQL's dynamic binning

tools are.

Conclusions

PL/Python is a fun tool for dynamic HTTP data access.

The generate_series() function can create sets of floats and timestamps as

well as integers.

The new date_bin() function is very handy for grouping timestamps on non-

standard intervals.

The width_bucket() function is a powerful tool for creating counts of values in

dynamically generated bins.

Pairing unnest() with ORDINALITY is a cute trick to generate row numbers to

go along with row sets.

Enjoy this article?

You will love our newsletter!

Enter your email
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.postgresql.org/docs/current/plpython.html
https://www.crunchydata.com/privacy

Join The List

WRITTEN BY

Paul Ramsey

March 16, 2023 • More by this author

PRODUCTS

Crunchy Postgres

Crunchy Postgres for Kubernetes

Crunchy Bridge

Crunchy Certified PostgreSQL

Crunchy PostgreSQL for Cloud Foundry

Crunchy MLS PostgreSQL

Crunchy Spatial

SERVICES & SUPPORT

Enterprise PostgreSQL Support

Ansible

Red Hat Partner

Trusted PostgreSQL

Crunchy Data Subscription

RESOURCES

Customer Portal

Software Documentation

Blog

Events

COMPANY

About Crunchy Data

Team

News

Careers

Contact Us

Newsletter

Security

CRUNCHY DATA NEWSLETTER

Subscribe to the Crunchy Data Newsletter to receive Postgres content every month.
This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://twitter.com/pwramsey
https://www.crunchydata.com/blog/author/paul-ramsey
https://www.crunchydata.com/products/crunchy-high-availability-postgresql
https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://www.crunchydata.com/products/crunchy-bridge
https://www.crunchydata.com/products/crunchy-certified-postgresql
https://www.crunchydata.com/products/crunchy-postgresql-for-cloud-foundry
https://www.crunchydata.com/products/crunchy-mls-postgresql
https://www.crunchydata.com/products/crunchy-spatial
https://www.crunchydata.com/solutions/enterprise-postgresql-support
https://www.crunchydata.com/solutions/ansible
https://www.crunchydata.com/red-hat-certified-technologies
https://www.crunchydata.com/about/postgresql-enterprise-database
https://www.crunchydata.com/about/value-of-subscription
https://access.crunchydata.com/?CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih&CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih
https://access.crunchydata.com/documentation/
https://www.crunchydata.com/blog
https://www.crunchydata.com/events
https://www.crunchydata.com/about
https://www.crunchydata.com/team
https://www.crunchydata.com/news
https://www.crunchydata.com/careers
https://www.crunchydata.com/contact
https://www.crunchydata.com/newsletter
https://www.crunchydata.com/security
https://www.crunchydata.com/privacy

Enter your email

Join The List

© 2018-2023 Crunchy Data Solutions, Inc.

This site uses cookies for usage analytics to improve our service. By continuing to browse this site, you

agree to this use. Learn more

https://www.youtube.com/c/CrunchyDataPostgres
https://www.linkedin.com/company/crunchy-data-solutions-inc-?CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih&CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih
https://twitter.com/crunchydata?CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih&CrunchyAnonId=uijjqtxwphdouxvhlccylbvjkgnbbiedfyqczmwiqnnhydotwyih
https://github.com/CrunchyData
https://www.crunchydata.com/privacy

