
Hackflow
Sharing my mindset

RSS

Search

Navigate…

Blog
Archives

Ban 1+N in Django

Mar 26th, 2023

I always thought of 1+N as a thing that you just keep in your head, catch on code reviews or via performance regressions. This
worked well for a long time, however, the less control we have over our SQL queries the more likely it will sneak through those
guards.

A small history dive

This used to be very visible and meant almost “do not perform SQL queries in a cycle”:

1

2

3

books = c.execute("SELECT id, title, author_id FROM books").fetchall() # 1

for id, title, author_id in books:

 c.execute("SELECT full_name FROM authors WHERE id=?", [author_id]) # +N

With ORM and lazy loading this became a little bit less obvious:

1

2

3

books = Book.objects.filter(...) # 1

for book in books:

 print(f"Book title: {book.title}, author: {book.author.full_name}") # +N

With something so innocent as an attribute access making an SQL query, it’s much easier to miss it. Especially when this code
spreads out, the ORM objects are passed to templates, which also have loops and sure they can do attribute access.

As project grows, as its database schema becomes more complicated, as your team grows too, this keeps adding up. And magic
also adds up. One particular mention should be a GraphQL library, which resolves onto ORM automatically.

Back to the present
I tumbled on a couple of 1+Ns while reading a project code for an unrelated reason and it got me thinking – do I ever want
Django to do that lazy loading stuff? And the answer was never. This was a misfeature for me, the need for such thing is quite
circumstantial, usually when you load a list of things you need the same data about all of them, so it doesn’t make sense to lazy
load extra data for each object separately. Either eager load or batch lazy load, the latter Django does not do.

So, anyway, if I don’t need this than I might as well prohibit it, which turned out to be quite easy to do:

1

2

from django.db.models.query_utils import DeferredAttribute

https://suor.github.io/
https://suor.github.io/atom.xml
https://suor.github.io/
https://suor.github.io/blog/archives

Tweet

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

def _DeferredAttribute_get(self, instance, cls=None):

 if instance is None:

 return self

 data = instance.__dict__

 field_name = self.field.attname

 if field_name in data:

 return data[field_name]

 # Raise an exception to prevent an SQL query

 attr = f"{instance.__class__.__name__}.{field_name}"

 message = f"Lazy fetching of {attr} may cause 1+N issue"

 raise LookupError(message)

DeferredAttribute.__get__ = _DeferredAttribute_get

This way 1+N will blow up instead. Great, we’ll catch it during tests. The thing is, however, if 1+Ns were passing our defences
before they will probably continue now and this will explode in production. With this in mind, a flood guard and some
explanations it transforms into:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

import logging

import os

from django.db.models.query_utils import DeferredAttribute

logger = logging.getLogger(__name__)

attrs_seen = set()

def _DeferredAttribute_get(self, instance, cls=None):

 from django.conf import settings # monkeys go early, settings might not be available yet

 if instance is None:

 return self

 data = instance.__dict__

 field_name = self.field.attname

 # Normally this accessor won't be called if field_name is in __dict__,

 # we need this part so that DeferredAttribute descendants with __set__ play nice.

 if field_name in data:

 return data[field_name]

 # If it's not there already then prevent an SQL query or at least notify we are doing smth bad

 attr = f"{instance.__class__.__name__}.{field_name}"

 # Only trigger this check once per attr to not flood Sentry with identical messages

 if attr not in attrs_seen:

 attrs_seen.add(attr)

 message = f"Lazy fetching of {attr} may cause 1+N issue"

 # We stop in DEBUG mode and if inside tests but let production to proceed.

 # Using LookupError instead of AttributeError here to prevent higher level "handling" this.

 if settings.DEBUG or "PYTEST_CURRENT_TEST" in os.environ:

 raise LookupError(message)

 else:

 logger.exception(message)

 # Proceed normally

 return _DA_get_original.original(self, instance, cls)

_DA_get_original, DeferredAttribute.__get__ = DeferredAttribute.__get__, _DeferredAttribute_get

Which is ready to be used as is. Simply need to put or import it somewhere.

P.S. A small bonus – how I tried to make ChatGPT write this post for me. It was mostly failure :), but refactoring the code sample
was done nicely.

Posted by Alexander Schepanovski Mar 26th, 2023 CS, Python

« Metaprogramming Beyond Decency: Part 2

https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Fsuor.github.io%2F&ref_src=twsrc%5Etfw%7Ctwcamp%5Ebuttonembed%7Ctwterm%5Eshare%7Ctwgr%5E&text=Ban%201%2BN%20in%20Django%20-%20Hackflow&url=http%3A%2F%2Fhackflow.com%2Fblog%2F2023%2F03%2F26%2Fban-1-plus-n-in-django%2F&via=hackflow
https://gist.github.com/Suor/af424c3501792dba6fcf907506987571
https://suor.github.io/blog/categories/cs/
https://suor.github.io/blog/categories/python/
https://suor.github.io/blog/2015/04/12/metaprogramming-beyond-decency-part-2/

Comments, also at Hacker News and Reddit

Share Best Newest Oldest

0 Comments 1 Login

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe Privacy Do Not Sell My Data

G



About Me

I write in python, js and occasionally english. I also borrow ideas from a variety of languages. You might want to
follow me or look up my Github profile.

Recent Posts

Ban 1+N in Django
Metaprogramming Beyond Decency: Part 2
Metaprogramming Beyond Decency: Part 1
Boiling React Down to a Few Lines in jQuery
Growing Over Backward Incompatibility

GitHub Repos

django-cacheops

A slick ORM cache with automatic granular event-driven invalidation.

funcy

A fancy and practical functional tools

CommentsAwareEnter

Smart Enter in line comments in Sublime Text 2/3

whatever

https://news.ycombinator.com/item?id=35313565
https://www.reddit.com/r/programming/comments/122k3w3/ban_1n_in_django/
https://disqus.com/
https://disqus.com/home/inbox/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/data-sharing-settings/
https://twitter.com/hackflow
http://github.com/Suor
https://suor.github.io/blog/2023/03/26/ban-1-plus-n-in-django/
https://suor.github.io/blog/2015/04/12/metaprogramming-beyond-decency-part-2/
https://suor.github.io/blog/2015/03/29/metaprogramming-beyond-decency/
https://suor.github.io/blog/2015/03/08/boiling-react-down-to-few-lines-in-jquery/
https://suor.github.io/blog/2014/09/07/growing-over-backward-incompatibility/
https://github.com/Suor/django-cacheops
https://github.com/Suor/funcy
https://github.com/Suor/CommentsAwareEnter
https://github.com/Suor/whatever

Easy anonymous functions by partial application of operators
pg-bricks

Higher level PostgreSQL client for Node.js

@Suor on GitHub

Copyright © 2023 - Alexander Schepanovski - Powered by Octopress

https://github.com/Suor/pg-bricks
https://github.com/Suor
http://octopress.org/

