
Tales of a Sardinian software engineer

W

March 23, 2023

Reading time: 6 minutes (1219 words)

Functional Friday - Episode 2
Learning Rescript - Expressions

elcome back to Functional Friday, the place where functions stopped calling each other,
because they had constant arguments 🥁! In the last episode we had a look on how let
bindings and types work in ReScript and how they compare to JavaScript/TypeScript.

In this episode will focus mostly on expressions and we're going to use them to start introducing some
differences between functional programming languages and imperative ones.

Expressions, uh? 🤔

Normally speaking, an expression is the action of making known someone's thoughts or feelings, whereas
in programming an expression is an entity that may require further computation in order to determine its
value.
Also, in functional programming expressions are considered the basic building block for our programs,
while imperative languages relies more on statements (or commands).

It's important to fully understand this concept because, as we'll see, ReScript syntax is built around this.

Let Expressions

Previously, we saw how to use a let binding, and we noticed how similar was to declaring and assigning

a variable in an imperative language.

However, up to now we just talked about let definition. There's another usage of let which is an

expression

let areYouHappy = true
RES

https://mauriziovacca.blogspot.com/
https://mauriziovacca.blogspot.com/
https://mauriziovacca.blogspot.com/2023/03/functional-friday-rescript-expressions.html
https://mauriziovacca.blogspot.com/2023/03/functional-friday-discovering-rescript.html

At a first look, it may seems there're no huge difference, but there's an important thing to notice:
nextYear value is not immediately known and it depends on currentYear value.

Being used to read left to right here can make things counter-intuitive, so let's try to read right to left
instead: "considering the value 1, add the value of currentYear and bind it to nextYear". This expresses

(pun not intended) quite well what ReScript is going to do in order to determine nextYear value.

It is probably worth mentioning that ReScript will not allow us to write expressions that rely on coercion
to be evaluated; things like

will result in a type error since they violate inference rules [1].

As we're going to see in incoming episodes, let expressions are a really powerful tool. Just to give you

an idea, named functions themselves are let expressions, i.e.

I will not go into a deep explanation about it for two main reasons:

if you are familiar with JavaScript/TypeScript, it will probably remind you about arrow functions and
ternary operator, so you can probably have a good guessing about what it does;
we will talk in-depth about functions in a dedicated episode;

Nonetheless, keep in mind this example since it will lead us straight to the next topic.

If Expressions

If we put enough attention reading through the last lines of code, we may have probably noticed this

let nextYear = currentYear + 1
RES

const accountBalance = 2 + "1.00"
TS

let isApophisHittingUs = (currentYear) =>

 if currentYear == 2029 { "Oh dayum" }

 else { "Phew! Not today" }

RES

if currentYear == 2029 { "Oh dayum" }

else { "Phew! Not today" }

RES

which reads as follows: the expression if exp_1 { exp_2 } else { exp_3 } evaluates to exp_2

if exp_1 evaluates to true, otherwise it evaluates to exp_3. In functional programming exp_1 is

generally referred as the if expression guard.

While in imperative languages if-else are statements, in ReScript (and in OCaml too, for the matter)

they're expressions and as such they can be used and combined with other expressions, such the let
expressions we just talked about:

which, as said previously, is similar to writing a ternary operator in JavaScript/TypeScript

If expressions can be nested and we can use as well a ternary syntactic sugar, so writing

works just fine as well[2]. Aside from aforementioned similarities, there are few important aspects and
several differences compared to JavaScript/TypeScript to keep in mind. Let's check them out.

1. Guard type should be a bool

Coming from JavaScript/TypeScript, we may be tempted to write something like this:

but in ReScript this will result into an error

let drink = if isMorning { "Coffee" } else { "Tea" }
RES

const drink = isMorning ? "Coffee" : "Tea";
TS

// Nested if-else

let drink =

 if isMorning { "Coffee " }

 else {

 if isLunchTime { "Water" }

 else { "Tea" }

 }

// Ternary like

let drink = isMorning ? "Coffee" : "Tea"

RES

let drink = if 1 { "Coffee" } else { "Tea" }
RES

This happens because ReScript strictly requires the guard type to be a bool, so no truthy/falsy values are

allowed.

2. If and else branches should return expressions of the same type

In JavaScript/TypeScript, we may be used to write ternary like the following one

but in ReScript, this will result into an error

in such circumstances the compiler will also provide us a way to fix our expression, which is really
helpful.

The reason of this rule lies in the fact that we need to give this expression an overall type, but because
we're statically type-checking, we don't know which branch will be executed at runtime. Therefore both
branches must return the same type t, which is the type of the expression [3]. Also notice how the type

expectation comes from the if branch, and it's because ReScript evaluates the if branch first.

3. Braces and implicit returns

As you may have noticed, we're expected to always wrap if-else expressions with braces (with the

ternary syntactic sugar being an exception). This is called block scoping and the value in the last line in
each scope is always implicitly returned. Block scoping can be used in several ways, including let
expressions

This has type: int

 Somewhere wanted: bool

BASH

const price = isFormattedAsString ? "0.00" : 0.0;
TS

This has type: int

 Somewhere wanted: string

 You can convert int to string with Belt.Int.toString.

BASH

let fullName = {

 let firstName = "Thomas"

 let lastName = "Anderson"

RES

4. Else branch is mandatory

As obvious as it may sound, we always need to define an else branch, otherwise we're going to face an

interesting type error message. The following code

will in fact cause this type error

the unit type is a special type that has a single value () and it compiles to undefined. While there are

some specific cases where it may be useful or even beneficial to intentionally omit the else branch, for

now we'll keep it simple and just consider it mandatory.

Let's wrap it up! 🫡

In this episode we saw what expressions are, how to use both let and if expressions, how they

compare to JavaScript/TypeScript and how the type system interacts, being way more strict than what
we're used to. We now have some very basics building blocks and I encourage you to jump into the
playground and experiment yourself. Again, these arguments will recur in the future so keeping this article
in mind may be useful.

As always, thank you for reading through the whole article: I really hope you enjoyed the content and
you'll stick around for the next episode. Up to then, happy coding and... see you next time!
Cheers! 🤓

REFERENCES

[1] Aside from coercion, we should also keep in mind that (+) operator is not polymorphic. If you want further information about it,
feel free to check ReScript documentation.
[2] As mentioned in the official documentation it's preferable to use if-else blocks instead of ternary whenever is possible.
[3] In the incoming episodes, we'll see how we can eventually work around this using variants, even if there're way more efficient
way in ReScript to handle these cases.

Functional Programming Javascript ReScript Software Development TypeScript

 `${firstName} A. ${lastName}` // this line is implicitly returned

}

let dinner = if amIHungry { "Pizza" }
RES

This has type: string

 Somewhere wanted: unit

BASH

https://rescript-lang.org/try?version=v10.1.2&code=Q
https://rescript-lang.org/docs/manual/v8.0.0/overview#common-features-js-output
https://rescript-lang.org/docs/manual/latest/control-flow#if-else--ternary
https://mauriziovacca.blogspot.com/search/label/Functional%20Programming
https://mauriziovacca.blogspot.com/search/label/Javascript
https://mauriziovacca.blogspot.com/search/label/ReScript
https://mauriziovacca.blogspot.com/search/label/Software%20Development
https://mauriziovacca.blogspot.com/search/label/TypeScript

Wanna follow me?

To leave a comment, click the button below to sign in with Google.

SIGN IN WITH GOOGLE

Popular posts from this blog

March 16, 2023

March 08, 2023

Powered by Blogger

© Copyright 2023 - Maurizio Vacca

Report Abuse

Functional Friday - Episode 1 Discovering ReScript - Types and Let Binding Welcome to
this first episode of Functional Friday! This series is meant to be a journey of ReScript
discovery and what it looks like for a JavaScript/TypeScript developer. If you're …

READ MORE

About Me - Maurizio Vacca Curious by nature, driven by passion. I'm a software developer, whatever it
means. Hey, thank you! My name is Maurizio, nice to meet you. I do really appreciate you are taking the
time to read through this - hopefully - brief presentation of mine. Last time I had a blog it was during early…

READ MORE

https://mauriziovacca.blogspot.com/
https://mauriziovacca.blogspot.com/2023/03/functional-friday-discovering-rescript.html
https://mauriziovacca.blogspot.com/2023/03/functional-friday-discovering-rescript.html
https://mauriziovacca.blogspot.com/2023/03/about-me.html
https://www.blogger.com/
https://www.blogger.com/go/report-abuse
https://mauriziovacca.blogspot.com/2023/03/functional-friday-discovering-rescript.html
https://mauriziovacca.blogspot.com/2023/03/functional-friday-discovering-rescript.html
https://mauriziovacca.blogspot.com/2023/03/about-me.html
https://mauriziovacca.blogspot.com/2023/03/about-me.html

@maurizio_vacca

Maurizio Vacca

Archive

https://www.instagram.com/maurizio_vacca/
https://www.linkedin.com/in/maurizio-vacca-168822b8/

