
Cool frontend arts of local-first:
storage, sync, conflicts
March 15, 2023

Topics

Share this post on

Twitter Facebook LinkedIn

Frontend Design Full Cycle Software Development Product Launch CRDT JavaScript

Lean Software Development

SERVICES CLIENT S PRO DUCT S O PEN SO URCE BLO G EVENT S

Contact Us

https://evilmartians.com/chronicles?categories=frontend
https://evilmartians.com/chronicles?categories=design
https://evilmartians.com/chronicles?services=software-development
https://evilmartians.com/chronicles?services=product-launch
https://evilmartians.com/chronicles?skills=crdt
https://evilmartians.com/chronicles?skills=javascript
https://evilmartians.com/chronicles?skills=lean-software-development
https://evilmartians.com/services
https://evilmartians.com/clients
https://evilmartians.com/products
https://evilmartians.com/opensource
https://evilmartians.com/chronicles
https://evilmartians.com/events
https://twitter.com/evilmartians
https://github.com/evilmartians
https://www.linkedin.com/company/evil-martians
https://www.instagram.com/evil.martians
https://evilmartians.com/

Years ago, apps were o�line only. Nowadays, they’re mostly dependent on

internet connections, but some allow you to work o�line. When developing a

“local-first” app, even if it relies on data stored online, it should still work.

But, for frontend engineers, when it comes to the big 3 “local-first” tasks:

storage, synchronization, and conflict resolution, actually implementing

them with grace is almost like a fine art (or even a lost art, in some cases).

Let’s go digging.

We helped develop , an API testing tool who wanted to be the canonical app in their f ield. Read

that “local-f irst” success:

Pavel Grinchenko

Frontend Engineer

Travis Turner

Tech Editor

If you’re interested in translating or adapting this post , please first.contact us

HTTPie

Read also

UI design for HTTPie: macOS vibes for the API testing client

January 30, 2023

https://httpie.io/
https://evilmartians.com/chronicles/ui-design-for-httpie-macos-vibes-for-the-api-testing-client

But , before we get to those big 3 tasks, let ’s take a step back and paint a picture of

the full context.

Within their niche, every developer has one or two “perfect” applications they’ve

pretty much mentally canonized as “the cream of the crop” inside their field. Take

your pick, , , whatever. (And, I’d say, most engineers place the same few

collections of apps in their mental canons.)

So, here’s a natural question: what exactly is it that you like about [insert your

canonized app here]? For me, it ’s all about how we communicate with an app, in

particular, the data inside it.

It ’s not so important f or end users whether their data is saved on the server immediately, or 10 seconds

af ter connection has re-stabilized. Af ter all, connection loss isn’t the rarest problem on mobile

connections, even in modern megalopolises.

Let me elaborate: when it comes to direct data editing, I vastly prefer as little

intermediary steps as possible to get the job done: users can see their data change

instantly, there aren’t infinite levels of modal windows to get lost in, and, in cases

where users have a poor internet connection, the end user’s work should not be

a�ected. That last point brings us to the approach to product

development.

What is a “local-first” app?

The traditional approach to data processing in a network application works like this:

first , all the data is stored on a server. Second, the client application loads only the

data necessary to open a particular page.

We’ve probably all experienced those annoying “something is wrong with your

connection, please try again later” errors. Super annoying!

Linear Figma

local-first

https://linear.app/
https://www.figma.com/
https://www.inkandswitch.com/local-first/

With local-first apps, the main idea is that users should be able to

work e�ectively with an application, even if they’re o�line.

Here are the important takeaways: technically speaking, the local-first approach

implies that the user’s data and work must exist both on servers and clients. Users

should be able to continue working with a local-first app even if it relies on data

stored online. This requires that these local-first applications are engineered in

such a way so that when an internet connection becomes available again, the user’s

local data must be then synchronized with the server.

Engineers sometimes try to solve this using an Optimistic UI approach, but while , on the UI side , users

of ten see their operations successf ully completed, eventually, some error, like a connection drop, will

cause them to see a “rolled-back interf ace”.

With all this in mind, let ’s tackle the big 3 tasks for engineers working on an

application where “local-first” features are a requirement. Those are: storage,

synchronization, and conflict resolution.

Storage

Currently, web developers have access to several storage types: local storage,

session storage, and IndexedDB, to name a few. Session storage and local storage

have a 5MB limit , and, thus, are clearly unsuitable for any serious endeavor involving

storing user data. So, let ’s talk about IndexedDB. It ’s crucial to understand that

IndexedDB is asynchronous storage, and with some frameworks, this can cause

integration problems.

There are experiments to bring SQLite (and) and PostgreSQL () to

the browser, but they look f ar f rom production-ready status. Still, if you’re developing an Electron-only

web app, you could consider them as an alternative solution.

Read more about integration pitf alls:

Let ’s talk about these integration problems: when you add new functionality, you

often need to change the data storage scheme. But simply changing the schema is

not so easily done, is it? First of all, you have to take care of the already existing

data. This means you’ll need to invent a data migration mechanism. (This is not only

the case with IndexedDB, but all storage systems).

So, we have to store data, and we have to interact with it. Clear enough. But working

within a distributed environment (like the little world of a user’s local data and the

sql.js absurd-sql Post greSQL in WASM

Read also

How to avoid tricky async state manager pitfalls in React

February 21, 2023

https://github.com/sql-js/sql.js
https://github.com/jlongster/absurd-sql
https://wasm.supabase.com/
https://evilmartians.com/chronicles/how-to-avoid-tricky-async-state-manager-pitfalls-react

“bigger” server data, or even a peer-to-peer environment with no server) imposes

some limitations in this field.

(And by the way, yes, sometimes we’ll use several storages simultaneously, as is

typical when developing standard web applications.)

Storage: record collection

Each local client itself is responsible for record creation and, accordingly, must

generate record IDs. With the local-first approach, ordered IDs aren’t a fit due to

collisions between di�erent clients.

The most typical method is to use v4 UUIDs. Although there is still

the possibility of collisions, this is relatively small.

For related data, or data that needs a consistent ID based on any attribute with a

constant value, it ’s convenient to use v5 UUIDs, since we can provide a UUID

namespace and input string and get a non-random, unique ID, a deterministic UUID.

Storage: deletion

In classic applications, in most cases, we can simply delete data from the database

as needed. But in the case of a distributed system, we shouldn’t do this.

By the way, f or some sof t-deletion f un, check this post :

Read also

https://evilmartians.com/chronicles/soft-deletion-with-postgresql-but-with-logic-on-the-database

Why? Well, we could face a situation where one internet-connected (although, they

could be o�line, as well) user deletes a post , and meanwhile, another user will have

also edited the same post using the o�line version of the app.

This is a problem. During synchronization, it will be impossible to tell if this record

was “really deleted”, or even if it originally existed in the first place, and now the

user is trying to update a non-existent record. Therefore, we recommend using

soft-deletion and just marking the data as deleted.

Storage: dealing with inconsistent data

Most applications use relations between records. But in a local-first application, the

existing ID of a related record doesn’t mean this record has already been synced

with your client and is available for use. Perhaps, in the synchronization process,

you’ll receive only the main record with the first batch, and the related records will

be downloaded in the next batches. Your application should handle these cases

correctly.

If you have ordered data in your application and users can change that order, then

you shouldn’t use classic indexes for controlling element positions. It simply won’t

work if multiple users simultaneously decide to change the record orders. Moreover,

naive solutions increase DB write counts, and therefore, items to sync.

To solve this problem, there is an elegant and simple solution: . The

index of a new position is calculated based on the indices of its new neighbors, while

Soft deletion with PostgreSQL: but with logic on the database!

May 16, 2022

fractional-indices

https://www.figma.com/blog/realtime-editing-of-ordered-sequences/
https://evilmartians.com/chronicles/soft-deletion-with-postgresql-but-with-logic-on-the-database

the index of other records does not change. At the same time, sorting itself

continues to work as before. Let ’s take a brief look at how it works.

With the regular approach:

const items = [

{ id: 'a', sort: 1 },

{ id: 'b', sort: 2 },

];

// Insert item in the middle

const items = [

{ id: 'a', sort: 1 },

{ id: 'c', sort: 2 }, // New item

{ id: 'b', sort: 3 }, // Index was changed to 3

]

// Insert item at the start of array

const items = [

{ id: 'd', sort: 1 }, // New item

{ id: 'a', sort: 2 }, // Index was changed to 2

{ id: 'c', sort: 3 }, // Index was changed to 3

{ id: 'b', sort: 4 }, // Index was changed to 4

]

With fractional indices:

const items = [

{ id: 'a', sort: 1 },

{ id: 'b', sort: 2 }

];

// Insert item in the middle

const items = [

{ id: 'a', sort: 1 },

{ id: 'c': sort: 1.5 }, // New item

{ id: 'b': sort: 2 }

]

// Insert item at the start of array

const items = [

{ id: 'd', sort: 0.5 }, // New item

{ id: 'a', sort: 1 },

{ id: 'c': sort: 1.5 },

{ id: 'b': sort: 2 },

]

Note what items have changed during inserts in both examples! You can also read

 or even use a ready-made library.

Synchronization

For local-first apps, the synchronization process is one of the most critical factors

to deal with because it directly a�ects the user experience. To e�ectively

implement synchronization, we must take into account many nuances: for instance,

the version of data a user currently has, what changes they have made since the last

synchronization, whether these need to be synchronized with the server, and so on.

To simplify a bit, synchronization usually comes down to

2 operations: Pull and Push.

Pull is responsible for getting new changes from the server while Push sends local

changes to the server. But the data they send in these operations can be

presented di�erently.

this article on reordering fractional indices

https://www.steveruiz.me/posts/reordering-fractional-indices

In the most simple case, push can send a completely updated model: in this case,

other users’ changes in other fields of the same model will be overwritten. It also

unnecessarily enlarges tra�c between server and client. (This approach only fits

some very limited cases.) This problem can be solved by using the most atomized

models, but in terms of storing and performing operations with data, since this

atomized approach means you need to store every field independently, this option is

not very convenient.

Sending atomic changes from a client is the more convenient way. We can send only

the model’s ID and its updated fields. This allows storing data in the usual way, and it

reduces conflicts that may arise when users are working on the same record at the

same time. If users have changed di�erent fields in the same record, they will not

have any conflicts, and both fields will be saved correctly.

We can also send operations instead of changed data, instead of sending changed

data. For example, instead of { id: 1, amount: 42 } , the operation might look

like this:

// let’s suggest the original value was 41

{ target: `event[1].amount`, op: { type: 'add', value: 1 } }

Or, instead of { id: 1, address: "Lisboa, Portugal" } , it looks like this:

// let’s suggest the original value was "Lisbon"

{ target: `location[1].address`, op: { type: 'insert', at: 6, value: ', Portugal' } }

At first glance, the “operations” variant looks redundant , but it has its advantages.

The client can keep a log of such operations and consistently apply them over

existing data. This is similar to the “rebase” operation in Git , where we can apply

commits one by one over a new base commit. In our case, the new “base” is fresh

data pulled up from the server, and “commits” are the operation log.

By adjusting the operations’ atomicity, you can reduce possible conflicts. E.g., in the

example above, when we edit a text field, we do not entirely rewrite it but insert a

value into an already existing text according to a specific index.

To implement this approach, the data must be . The most

famous implementation for managing such data is the library, and here’s a

more .

Combined options are also possible. For example, operations can be sent with Push,

and we can request patches for data again with Pull.

Examples of synchronization implementations:

By the way, we have our own Evil Martians solution for collaborative apps, .

Conflict resolution

designed in a special way

automerge

in-depth video on automerge

• Example with WatermelonDB

• Example with Replicache

• Example with RxDB

Logux

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://automerge.org/
https://www.youtube.com/watch?v=Qytg0Ibet2E
https://nozbe.github.io/WatermelonDB/Advanced/Sync.html
https://doc.replicache.dev/concepts/how-it-works#sync-details
https://rxdb.info/replication.html
https://logux.io/

Anyway you slice it , we will inevitably have data conflicts. The frequency of these

conflicts directly depends on how your app is used, but you shouldn’t rely on the fact

that , even if users only work with their own data, it won’t trigger conflicts

somewhere.

For instance, your user might work from di�erent devices, which can lead to

“change” conflicts. Additionally, the app’s communication model is also critical: do you

have an Authoritative server, or are you building a fully distributed system (P2P)? In

the first case, you can assign the responsibility for the conflict resolution strategy

to your server as a single source of truth. But in this scheme, conflicts can also be

resolved on a client:

• WatermelonDB docs on conflict resolution

• Replicache’s vision on conflict resolution

• RxDB’s docs on handling conflicts

https://nozbe.github.io/WatermelonDB/Implementation/SyncImpl.html?highlight=conflict#general-design
https://doc.replicache.dev/concepts/how-it-works#conflict-resolution
https://rxdb.info/replication.html#conflict-handling

Your conflict resolution model is tightly intertwined with the model of interaction

between your users: both in terms of their interaction with your application and

with each other. In some cases, last-write wins at the record field level will be enough;

in others, we strongly need a full-fledged CRDT.

And with that , we’ve considered the three main pillars upon which your application

will rely on: storage, synchronization, and conflict resolution. But that ’s not all.

What else should we care about?

It ’s important to consider the following: because of an app’s distributed nature,

users might actually end up working with di�erent versions or di�erent releases of

the same app simultaneously. For instance, this could be the web version of an

application versus an Electron application.

And, if we consider o�line work, in some cases, it’s possible that a

user hasn’t connected for so long that the data structure or

server API had been changed during that time. And that’s a

problem we need to solve.

So, before we synchronize the data, we need to update the application. For a typical

web application, a browser tab refresh is su�cient , but with a desktop Electron app,

you should incorporate an automatic update system; otherwise, you may lose a

significant number of users who simply will get tired of the need to manually update

their apps. Today’s most comprehensive tool for building Electron applications is the

.

Multiple tabs

electron-builder

https://www.electron.build/auto-update.html

If your application can be used in multiple windows, you’ll likely encounter problems

with leader determination and cross-window communication. Why is this so

important to consider? Some services should only work in the leader:

With regards to the last point , the modern web platform provides some APIs to

solve these problems:

Note: There is an alternative approach with just one instance of main logic using

SharedWorker and communicating with it from all tabs. This has its pros and cons. It

makes it unnecessary to choose a leader and doesn’t block the main thread. The main

disadvantage is limited browser support.

Here’s an example of determining a leader using the Web Locks API (the code author

is):

We have to have just one instance of the database for an application, meaning

its initialization must occur just once.

•

When updating the data structure, you need to migrate existing data, and it

makes no sense to do this several times in all windows.

•

Data synchronization is best done centrally from the main application instance.•

It ’s also better to manage authorization from one place. But at the same time,

you need to understand that all other app instances must contain the current

state of the application, so you need to synchronize this state somehow

between windows.

•

For window-to-window interaction, there is which boasts

good support in browsers.

• BroadcastChannel

Defining a leader in an asynchronous environment can be a non-trivial task.

Luckily, there is the , an API with good browser support.

•

Web Locks API

Ivan Buryak

https://developer.mozilla.org/en-US/docs/Web/API/BroadcastChannel
https://developer.mozilla.org/en-US/docs/Web/API/Web_Locks_API
https://github.com/11bit

async function awaitLeadership() {

const NEVER = new Promise(() => {})

return new Promise((resolve) => {

 window.navigator.locks.request('isLeader', () => {

resolve()

return NEVER

})

})

}

awaitLeadership().then(() => {

 console.log('Hello, I am leader')

})

The benefits of the local-first approach

In this post , I covered many of the pitfalls you need to avoid if you’re developing a

local-first application. But despite these tricky cases, the local database model also

has a number of advantages over the classic client-server model.

Since you update the data locally, you can immediately display UI changes. In the

regular model, you are forced to implement a long request indication (like a spinner)

for users to understand that the application isn’t broken, it ’s just busy working.

With some backend APIs you have to handle all possible API errors per each request

individually. In local-first applications, you have a centralized sync protocol for this

purpose.

As mentioned elsewhere, the Optimistic UI approach partly solves this, but you need

to remember that the network may disconnect or a server may return an error and

then you need to roll back the changes correctly, and this is also some additional

work—sometimes, for each separate operation.

If the application needs to receive updates from the server, then usually you have to

implement this process separately via persistent connections (Server-sent events

or WebSocket). With synchronization implemented, you can simply update the state

on the server and it will automatically be synchronized with the client , and vice versa.

Finally, beyond UI/UX we have less stress on the server (there’s no need to perform a

request on every change, as we can bu�er logs. And, for frontend-centric teams,

there’s no need to build a ton of backend stu�, APIs, etc.

Out-of-the-box solutions

At the moment , there are a lot of toolkits for building local-first applications. The

most popular, which we’ve already met , are:

And, of course, we also have , the aforementioned Evil Martians open source

project. There and some others, like , and even

.

I’d highlight that these ready-made solutions don’t mean you won’t have to modify

them to fit your own needs, so keep this in mind, should you opt for this route.

In the case of a local-first application, we have to deal with a transfer of complexity

from the server to the client , and the server itself often becomes “skinny.” With

this approach, the model of interaction with the server is completely changed and

• Replicache

• RxDB

• Watermelon

Logux

Dexie Google Firebase has something

related to local-first apps

https://replicache.dev/
https://rxdb.info/
https://watermelondb.dev/
https://evilmartians.com/products/logux
https://dexie.org/cloud/
https://firebase.google.com/docs/firestore/manage-data/enable-offline

simplified, and application development starts to look like backend development , as

we have a database, and a schema, validations, and migrations coming along.

Not every single application requires a local-first approach because this approach

definitely complicates the application’s development. But at the same time, the

benefits it provides can become a killer feature of your application because users

can work with it more comfortably. This choice is up to you.

One more thing: Evil Martians are here and we’re ready to solve your problems:

frontend, product design, backend, devops or beyond, no matter you’re local or

across the globe, we’re here! for more info!

Join our email newsletter

Get all the new posts delivered directly to your inbox. Unsubscribe anytime.

Or

In the same orbit

Get in contact now

Your email

Subscribe

subscribe to a feed

Client Developer Tools Product Launch Design

https://evilmartians.com/chronicles.atom
https://evilmartians.com/clients/httpie

Explore more posts

HTTPie is an open-source API testing client. The team called on Evil Martians

to create the Web & Desktop version of the application. Though we started by

building a complex professional UI design, we also helped add new features on

the frontend and backend.

$6.5M
total f unding

Backed
by Coatue

Logux

A new way to connect clients and server. Instead of sending HTTP requests

(AJAX/REST), it synchronizes the log of operations between client , server, and

other clients through WebSockets.

Product Software Development Frontend CRDT WebSocket JavaScript

Frontend React JavaScript

https://evilmartians.com/clients/httpie
https://evilmartians.com/products/logux
https://evilmartians.com/chronicles/how-to-avoid-tricky-async-state-manager-pitfalls-react

How to avoid tricky async state manager pitfalls in React

February 21, 2023

How to Favicon in 2023: Six files that fit most needs

February 6, 2023

Frontend CSS

Frontend Design Case Study JavaScript React Gatsby

https://evilmartians.com/chronicles/how-to-avoid-tricky-async-state-manager-pitfalls-react
https://evilmartians.com/chronicles/how-to-favicon-in-2021-six-files-that-fit-most-needs
https://evilmartians.com/chronicles/how-to-build-a-better-react-map-with-pigeon-maps-and-mapbox

Contact us

We’d love to hear from you! We’re not really all that evil, and we love discussing

potential projects, intriguing ideas, and new opportunities. Complete the form

below or drop us a line at .

How to build a better React map with Pigeon Maps and
Mapbox

January 24, 2023

Midjourney vs. human illustrators: has AI already won?

December 13, 2022

surrender@evilmartians.com

Design Machine Learning Neural Networks

mailto:surrender@evilmartians.com
https://evilmartians.com/chronicles/how-to-build-a-better-react-map-with-pigeon-maps-and-mapbox
https://evilmartians.com/chronicles/midjourney-vs-human-illustrators-has-ai-already-won

How can we help you?

Your name and company

Email

Submit

United States

195 Montague St.

Brooklyn, New York

11201

Portugal

Rua Alexandre Oneill, 38,

Porto

4400�008

Japan

9F Edobori Center Building, 2�1�1 Edobori, Nishi‑ku,

�1 888 400 5485

�351 308 808 570

�81 6 6225 1242

tel:+18884005485
tel:+351308808570
tel:+81662251242

Osaka

550�0002

Join our email newsletter

Get all the new posts delivered directly to your inbox. Unsubscribe anytime.

Or

Designed and developed by Evil Martians

By using this site, you agree with our

Your email

Subscribe

subscribe to a feed

T WIT T ER FA CEBO O K INST A GRA M LINKEDIN GIT HUB DRIBBBLE YO UT UBE A NGELLIST

Privacy policy

Cookie & privacy preferences

Notice at collection

https://evilmartians.com/chronicles.atom
https://twitter.com/evilmartians
https://www.facebook.com/evilmartians
https://www.instagram.com/evil.martians
https://www.linkedin.com/company/evil-martians
https://github.com/evilmartians
https://dribbble.com/evilmartians
https://www.youtube.com/@evil.martians
https://angel.co/company/evilmartians
https://evilmartians.com/privacy
https://evilmartians.com/cookies
https://evilmartians.com/privacy#notice_at_collection

