
Ramda
A practical functional library for JavaScript programmers.

BuildBuild passingpassing (https://github.com/ramda/ramda/actions?query=workflow%3ABuild) Test Coverage
(https://codeclimate.com/github/ramda/ramda/test_coverage)
(https://www.npmjs.org/package/ramda) available onavailable on deno.land/xdeno.land/x (https://deno.land/x/ramda@v0.27.2)

 (https://nest.land/package/ramda) gittergitter join chatjoin chat (https://gitter.im/ramda/ramda?

utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

Why Ramda?
There are already several excellent libraries with a functional flavor. Typically, they are
meant to be general-purpose toolkits, suitable for working in multiple paradigms. Ramda
has a more focused goal. We wanted a library designed specifically for a functional
programming style, one that makes it easy to create functional pipelines, one that never
mutates user data.

What's Different?
The primary distinguishing features of Ramda are:

Ramda emphasizes a purer functional style. Immutability and side-effect free functions are at the heart of its design
philosophy. This can help you get the job done with simple, elegant code.

Ramda functions are automatically curried. This allows you to easily build up new functions from old ones simply by
not supplying the final parameters.

The parameters to Ramda functions are arranged to make it convenient for currying. The data to be operated on is
generally supplied last.

The last two points together make it very easy to build functions as sequences of simpler functions, each of which
transforms the data and passes it along to the next. Ramda is designed to support this style of coding.

Introductions
Introducing Ramda (http://buzzdecafe.github.io/code/2014/05/16/introducing-ramda) by Buzz de Cafe
Why Ramda? (http://fr.umio.us/why-ramda/) by Scott Sauyet
Favoring Curry (http://fr.umio.us/favoring-curry/) by Scott Sauyet
Why Curry Helps (https://hughfdjackson.com/javascript/why-curry-helps/) by Hugh Jackson
Hey Underscore, You're Doing It Wrong! (https://www.youtube.com/watch?v=m3svKOdZijA&app=desktop) by Brian
Lonsdorf
Thinking in Ramda (https://randycoulman.com/blog/categories/thinking-in-ramda) by Randy Coulman

Philosophy
Using Ramda should feel much like just using JavaScript. It is practical, functional JavaScript. We're not introducing
lambda expressions in strings, we're not borrowing consed lists, we're not porting over all of the Clojure functions.

https://github.com/ramda/ramda/actions?query=workflow%3ABuild
https://codeclimate.com/github/ramda/ramda/test_coverage
https://www.npmjs.org/package/ramda
https://deno.land/x/ramda@v0.27.2
https://nest.land/package/ramda
https://gitter.im/ramda/ramda?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
http://buzzdecafe.github.io/code/2014/05/16/introducing-ramda
http://fr.umio.us/why-ramda/
http://fr.umio.us/favoring-curry/
https://hughfdjackson.com/javascript/why-curry-helps/
https://www.youtube.com/watch?v=m3svKOdZijA&app=desktop
https://randycoulman.com/blog/categories/thinking-in-ramda

Our basic data structures are plain JavaScript objects, and our usual collections are JavaScript arrays. We also keep
other native features of JavaScript, such as functions as objects with properties.

Functional programming is in good part about immutable objects and side-effect free functions. While Ramda does not
enforce this, it enables such style to be as frictionless as possible.

We aim for an implementation both clean and elegant, but the API is king. We sacrifice a great deal of implementation
elegance for even a slightly cleaner API.

Last but not least, Ramda strives for performance. A reliable and quick implementation wins over any notions of functional
purity.

Installation
To use with node:

$ npm install ramda

Then in the console:

const R = require('ramda');

To use directly in Deno (https://deno.land):

import * as R from "https://deno.land/x/ramda@v0.27.2/mod.ts";

or using Nest.land:

import * as R from "https://x.nest.land/ramda@0.27.2/mod.ts";

To use directly in the browser:

<script src="path/to/yourCopyOf/ramda.js"></script>

or the minified version:

<script src="path/to/yourCopyOf/ramda.min.js"></script>

or from a CDN, either cdnjs:

<script src="//cdnjs.cloudflare.com/ajax/libs/ramda/0.25.0/ramda.min.js"></script>

or one of the below links from jsDelivr (http://jsdelivr.com):

<script src="//cdn.jsdelivr.net/npm/ramda@0.25.0/dist/ramda.min.js"></script>

<script src="//cdn.jsdelivr.net/npm/ramda@0.25/dist/ramda.min.js"></script>

<script src="//cdn.jsdelivr.net/npm/ramda@latest/dist/ramda.min.js"></script>

(note that using latest is taking a significant risk that ramda API changes could break your code.)

These script tags add the variable R on the browser's global scope.

Or you can inject ramda into virtually any unsuspecting website using the bookmarklet
(https://github.com/ramda/ramda/blob/master/BOOKMARKLET.md).

https://deno.land/
http://jsdelivr.com/
https://github.com/ramda/ramda/blob/master/BOOKMARKLET.md

Note for versions > 0.25 Ramda versions > 0.25 don't have a default export. So instead of import R from 'ramda'; ,

one has to use import * as R from 'ramda'; Or better yet, import only the required functions via import {

functionName } from 'ramda';

Note for ES6 module and browsers In order to access to the ES6 module in browsers, one has to provide the content
of the es directory (see below for the build instructions) and use import * as R from

'./node_modules/ramda/es/index.js';

Build
npm run build creates es , src directories and updates both dist/ramda.js and dist/ramda.min.js

Partial Builds

It is possible to build Ramda with a subset of the functionality to reduce its file size. Ramda's build system supports this
with command line flags. For example if you're using R.compose , R.reduce , and R.filter you can create a partial

build with:

npm run --silent partial-build compose reduce filter > dist/ramda.custom.js

This requires having Node/io.js installed and ramda's dependencies installed (just use npm install before running

partial build).

Install specific functions
Install individual functions (https://bitsrc.io/ramda/ramda) with bit, npm and yarn without installing the whole library.

Documentation
Please review the API documentation (https://ramdajs.com/docs/).

Also available is our Cookbook (https://github.com/ramda/ramda/wiki/Cookbook) of functions built from Ramda that you
may find useful.

The Name
Ok, so we like sheep. That's all. It's a short name, not already taken. It could as easily have been eweda , but then we

would be forced to say eweda lamb!, and no one wants that. For non-English speakers, lambs are baby sheep, ewes are
female sheep, and rams are male sheep. So perhaps ramda is a grown-up lambda... but probably not.

Running The Test Suite
Console:

To run the test suite from the console, you need to have mocha installed:

npm install -g mocha

Then from the root of the project, you can just call

mocha

Alternately, if you've installed the dependencies, via:

https://bitsrc.io/ramda/ramda
https://ramdajs.com/docs/
https://github.com/ramda/ramda/wiki/Cookbook

npm install

then you can run the tests (and get detailed output) by running:

npm test

Browser:

You can use testem (https://github.com/airportyh/testem) to test across different browsers (or even headlessly), with
livereloading of tests. Install testem (npm install -g testem) and run testem . Open the link provided in your browser

and you will see the results in your terminal.

If you have PhantomJS installed, you can run testem -l phantomjs to run the tests completely headlessly.

Usage
For v0.25 and up, import the whole library or pick ES modules directly from the library:

import * as R from 'ramda'

const {identity} = R
R.map(identity, [1, 2, 3])

Destructuring imports from ramda does not necessarily prevent importing the entire library. You can manually cherry-pick
methods like the following, which would only grab the parts necessary for identity to work:

import identity from 'ramda/src/identity'

identity()

Manually cherry picking methods is cumbersome, however. Most bundlers like Webpack and Rollup offer tree-shaking as
a way to drop unused Ramda code and reduce bundle size, but their performance varies, discussed here
(https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples). Here is a summary of the optimal setup based on
what technology you are using:

1. Webpack + Babel - use babel-plugin-ramda (https://github.com/megawac/babel-plugin-ramda) to automatically

cherry pick methods. Discussion here (https://www.andrewsouthpaw.com/ramda-webpack-and-tree-shaking/),
example here (https://github.com/AndrewSouthpaw/ramda-webpack-tree-shaking-examples/blob/master/07-
webpack-babel-plugin-ramda/package.json)

2. Webpack only - use UglifyJS plugin for treeshaking along with the ModuleConcatenationPlugin . Discussion

here (https://github.com/ramda/ramda/issues/2355), with an example setup here
(https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples/blob/master/06-webpack-scope-
hoisted/webpack.config.js)

3. Rollup - does a fine job properly treeshaking, no special work needed; example here
(https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples/blob/master/07-rollup-ramda-tree-
shaking/rollup.config.js)

Typings
TypeScript (https://www.npmjs.com/package/@types/ramda)
Flow (https://github.com/flowtype/flow-typed/tree/master/definitions/npm/ramda_v0.x.x)

https://github.com/airportyh/testem
https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples
https://github.com/megawac/babel-plugin-ramda
https://www.andrewsouthpaw.com/ramda-webpack-and-tree-shaking/
https://github.com/AndrewSouthpaw/ramda-webpack-tree-shaking-examples/blob/master/07-webpack-babel-plugin-ramda/package.json
https://github.com/ramda/ramda/issues/2355
https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples/blob/master/06-webpack-scope-hoisted/webpack.config.js
https://github.com/scabbiaza/ramda-webpack-tree-shaking-examples/blob/master/07-rollup-ramda-tree-shaking/rollup.config.js
https://www.npmjs.com/package/@types/ramda
https://github.com/flowtype/flow-typed/tree/master/definitions/npm/ramda_v0.x.x

Translations
Chinese() (http://ramda.cn/)
Ukrainian(Українська) (https://github.com/ivanzusko/ramda)
Portuguese(BR) (https://github.com/renansj/ramda)
Russian(Русский) (https://github.com/Guck111/ramda)
Spanish(ES) (https://github.com/wirecobweb/ramda)

Funding
If you wish to donate to Ramda please see our Open Collective (https://opencollective.com/ramda) page. Thank you!

Acknowledgements
Thanks to J. C. Phillipps (http://www.jcphillipps.com) for the Ramda logo. Ramda logo artwork © 2014 J. C. Phillipps.
Licensed Creative Commons CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/).

http://ramda.cn/
https://github.com/ivanzusko/ramda
https://github.com/renansj/ramda
https://github.com/Guck111/ramda
https://github.com/wirecobweb/ramda
https://opencollective.com/ramda
http://www.jcphillipps.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

