
Mind the gap: Using SQL functions for
time-series analysis

01 Introduction to time bucketing

02 Challenges with time bucketing

03 Time bucketing with gap filling

04 Best practices

See More

Table of contents

Home Search

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/
https://www.timescale.com/legal/privacy

Write more efficient and readable queries with a new set of time-series analytic tools included in TimescaleDB 1.2

UPDATE: TimescaleDB 1.2 was released on January 29, 2019. Please refer to the TimescaleDB 1.3 release for the most

recent improvements on certain features described below.

If you've been following the development of the upcoming TimescaleDB 1.2 release in GitHub, you'll notice three new SQL

functions for time series analysis: time_bucket_gapfill , interpolate , and locf . Used together, these functions will

enable you to write more efficient and readable queries for time-series analysis using SQL.

In this post, we'll talk about why you'd want to use time buckets, the related gap filling techniques, and how they’re

implemented under the hood. Ultimately it's the story of how we extended SQL and the PostgreSQL query planner to

create a set of highly optimized functions for time-series analysis.

Introduction to time bucketing

Many common techniques for time series analysis assume that our temporal observations are aggregated to fixed time

intervals. Dashboards and most visualizations of time series rely on this technique to make sense of our raw data, turning

the noise into a smoother trend line that is more easily interpretable and analytically tractable.

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://github.com/timescale/timescaledb/releases/tag/1.2.0?ref=timescale-blog
https://github.com/timescale/timescaledb/releases/tag/1.3.0?ref=timescale-blog
https://github.com/timescale/timescaledb?ref=timescale-blog
https://www.timescale.com/legal/privacy

When writing queries for this type of reporting, we need an efficient way to aggregate raw observations (often noisy and

irregular) to fixed time intervals. Examples of such queries might be average temperature per hour or the average CPU

utilization per 5 seconds.

The solution is time bucketing. The time_bucket function has been a core feature of TimescaleDB since the first public

beta release. With time bucketing, we can get a clear picture of the important data trends using a concise, declarative

SQL query.

SELECT

 time_bucket('1 minute', time) as one_minute_bucket,

 avg(value) as avg_value

FROM observations

GROUP BY one_minute_bucket

ORDER BY one_minute_bucket;

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/timebucket-1.gif
https://www.timescale.com/blog/when-boring-is-awesome-building-a-scalable-time-series-database-on-postgresql-2900ea453ee2
https://www.timescale.com/legal/privacy

Challenges with time bucketing

The reality of time series data engineering is not always so easy.

Consider measurements recorded at irregular sampling intervals, either intentionally aswithmeasurements recorded in

response to external events (e.g. motion sensor). Or perhaps inadvertently due to network problems, out of sync clocks,

or equipment taken offline for maintenance.

Time bucket: none

We should also consider the case of analyzing multiple measurements recorded at mismatched sampling intervals. For

instance, you might collect some of your data every second and some every minute but still need to analyze both metrics

at 15 second intervals.

The time_bucket function will only aggregate your data to a given time bucket if there is data in it. In both the cases of

mismatched or irregular sampling, a time bucket interval might come back with missing data (i.e gaps).

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/none.jpg
https://www.timescale.com/legal/privacy

Time bucket: 20 minutes

If your analysis requires data aggregated to contiguous time intervals, the time bucketing with gap filling solves this

problem.

Time bucketing with gap filling

In upcoming TimescaleDB 1.2 release, community users will have access to:

Gap filling

The new time_bucket_gapfill function is similar to time_bucket except that it guarantees a contiguous, ordered set

of time buckets.

The function requires that you provide a start and finish argument to specify the time range for which you need

contiguous buckets. The result set will contain additional rows in place of any gaps, ensuring that the returned rows are in

time_bucket_gapfill for creating contiguous, ordered time buckets.

interpolate to perform linear interpolation between the previous and next value.

locf or last observation carried forward to fill in gaps with the previous known value.

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/20mins.jpg
https://www.timescale.com/legal/privacy

chronological order and contiguous.

We'll talk more below about how this is implemented below. For now, let’s look at the SQL:

Note that one of the hours is missing data entirely and the average value is represented as NULL. Gap filling gives us a

contiguous set of time buckets but no data for those rows. That's where the locf and interpolate functions come

into play.

LOCF or last observation carried forward

The “last observation carried forward” technique can be used to impute missing values by assuming the previous known

value.

SELECT

 time_bucket_gapfill(

 '1 hour', time,

 start => '2019-01-21 9:00',

 finish => '2019-01-21 17:00') AS hour,

 avg(value) AS avg_val

FROM temperature

GROUP BY hour;

 hour | avg_val

------------------------+-------------------------

 2019-01-21 09:00:00+00 | 26.5867799823790905

 2019-01-21 10:00:00+00 | 23.25141648529633607

 2019-01-21 11:00:00+00 | 21.9964633100885991

 2019-01-21 12:00:00+00 | 23.08512263446292656

 2019-01-21 13:00:00+00 |

 2019-01-21 14:00:00+00 | 27.9968220672055895

 2019-01-21 15:00:00+00 | 26.4914455532679670

 2019-01-21 16:00:00+00 | 24.07531628738616732

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/legal/privacy

Shown here:

LOCF at 20 minutes

Linear interpolation

Linear interpolation imputes missing values by assuming a line between the previous known value and the next known

value.

SELECT

 time_bucket_gapfill(

 '1 hour', time,

 start => '2019-01-21 9:00',

 finish => '2019-01-21 17:00') AS hour,

 -- instead of avg(val)

 locf(avg(val))

FROM temperature

GROUP BY hour

ORDER BY hour

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/LOCF_-20-minutes.jpg
https://www.timescale.com/legal/privacy

Shown here:

Interpolate at 20 minutes

These techniques are not exclusive; you can combine them as needed in a single time bucketed query:

SELECT

 time_bucket_gapfill(

 '1 hour', time,

 start => '2019-01-21 9:00',

 finish => '2019-01-21 17:00') AS hour,

 -- instead of avg(val)

 interpolate(avg(val))

FROM temperature

GROUP BY hour

ORDER BY hour

locf(avg(temperature)), interpolate(max(humidity)), avg(other_val)

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/inter20mins-1.jpg
https://www.timescale.com/legal/privacy

Best practices

Whether you chose to use LOCF, interpolation, or gap filling with nulls depends on your assumptions about the data and

your analytical approach.

If you chose to explicitly ORDER your results, keep in mind that the gap filling will sort by time in ascending order. Any

other explicit ordering may introduce additional sorting steps in the query plan.

Extending SQL for time series analysis

Astute readers will note that our docs had previously contained some examples of these gap filling techniques using a

different query. It used some tricks with generate_series and joins to achieve a similar effect but was verbose, limited in

functionality, and challenging to write correctly.

The new time_bucket_gapfill query is not only significantly more readable, it’s less error prone, more flexible with

regards to grouping, and faster to execute.

How does TimescaleDB achieve this? Under the hood, these are not ordinary functions but specially-optimized hooks into

the database query planner itself. The time_bucket_gapfill function inserts a custom scan node and sort node (if

needed) into the query plan. This creates ordered, contiguous time buckets even if some of the buckets are missing

Use locf if you assume your measurement changes only when you've received new data.

Use interpolation if you assume your continuous measurement would have a smooth roughly linear trend if

sampled at a higher rate.

Use standard aggregate functions (without locf or interpolation) if your data is not continuous on the time axis. Where

there is no data, the result is assumed NULL.

If you want to assume scalar values (typically zero) in place of NULLs, you can use PostgreSQL’s coalesce function:

COALESCE(avg(val), 0)

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.postgresql.org/docs/11/custom-scan.html?ref=timescale-blog
https://www.timescale.com/legal/privacy

observations. The locf and interpolate functions are not executed directly but serve as markers so that the gap

filling node can track the previous and next known values.

Query plan visualization resulting from time_bucket_gapfill; courtesy of https://tatiyants.com/pev

The result: a semantically cleaner language for expressing time-series analysis, easier to debug, more performant, and

saves the application developer from having to implement any of these tricks on the application side. This is another

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/content/images/2019/01/customscan.png
https://www.timescale.com/legal/privacy

example of how Timescale is extending PostgresSQL for high-performance, general purpose time-series data

management.

Next steps

As mentioned above, TimescaleDB 1.2 is still in development, but will be released in the very near future. Once released,

time buckets with gap filling and the related imputation function will be available as community features under the TSL

license. (For more information on the license, read this blog post.)

In the meantime, if you’re interested in learning more about gapfilling, check out our docs. And if you are new to

TimescaleDB and ready to get started, follow the installation instructions.

We encourage active TimescaleDB users to join our 1900+ member-strong Slack community and post any questions you

may have there. Finally, if you are looking for enterprise-grade support and assistance, please let us know.

Interested in learning more? Follow us on Twitter or sign up below to receive more posts like this!

The open-source relational database

for time-series and analytics.

This post was written by

Sven Klemm Matthew Perry

Share this Post

Related posts

Try Timescale for free

,

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/how-we-are-building-an-open-source-business-a7701516a480
https://docs.timescale.com/v1.2/using-timescaledb/reading-data?ref=timescale-blog#gap-filling
https://docs.timescale.com/v1.1/getting-started/installation/docker/installation?ref=timescale-blog
https://slack.timescale.com/?ref=timescale-blog
https://www.timescale.com/products?ref=timescale-blog
https://twitter.com/?ref=timescale-blog
https://www.timescale.com/blog/author/sven/
https://www.timescale.com/blog/author/matthew/
https://www.timescale.com/blog/author/sven/
https://www.timescale.com/blog/author/matthew/
https://www.timescale.com/timescale-signup
https://www.timescale.com/legal/privacy

Cloud

The PostgreSQL Job Scheduler You Always Wanted
(But Be Careful What You Ask For)
19 Jan 2023

Cloud

One-Click Multi-Node TimescaleDB: Announcing the
Support for Multi-Node Deployments in Timescale
Cloud
1 Nov 2021

Always Be Launching

TimescaleDB 2.3: Improving Columnar Compression for
Time-Series on PostgreSQL
26 May 2021

Products Learn Company

7 min read•

7 min read•

9 min read•

Product

Promscale

Support

Security

Documentation

Blog

Forum

Tutorials

Release notes

Case studies

Contact

Careers

About

Newsroom

Brand

Community

Timescale shop

Code of conduct

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://www.timescale.com/blog/the-postgresql-job-scheduler-you-always-wanted-but-be-careful-what-you-ask-for/
https://www.timescale.com/blog/the-postgresql-job-scheduler-you-always-wanted-but-be-careful-what-you-ask-for/
https://www.timescale.com/blog/one-click-multi-node-timescaledb-announcing-the-support-for-multi-node-deployments-in-timescale-cloud/
https://www.timescale.com/blog/one-click-multi-node-timescaledb-announcing-the-support-for-multi-node-deployments-in-timescale-cloud/
https://www.timescale.com/blog/timescaledb-2-3-improving-columnar-compression-for-time-series-on-postgresql/
https://www.timescale.com/blog/timescaledb-2-3-improving-columnar-compression-for-time-series-on-postgresql/
https://timescale.com/products
https://timescale.com/promscale
https://timescale.com/support
https://timescale.com/security
https://docs.timescale.com/
https://blog.timescale.com/
https://timescale.com/forum
https://docs.timescale.com/latest/tutorials
https://docs.timescale.com/release-notes
https://timescale.com/case-studies
https://timescale.com/contact
https://timescale.com/careers
https://timescale.com/about
https://timescale.com/newsroom
https://timescale.com/brand
https://www.timescale.com/community
https://shop.timescale.com/
https://www.timescale.com/code-of-conduct
https://www.timescale.com/legal/privacy

Subscribe to the Timescale Newsletter

Your email

By submitting you acknowledge the Timescale Privacy Policy.

2023 © Timescale, Inc. All Rights Reserved.

| | |

Subscribe

Privacy preferences Legal Privacy Sitemap

This website stores data such as cookies to enable essential site functionality, as well as marketing,

personalization, and analytics. By remaining on this website you indicate your consent.

Privacy Policy

https://timescale.com/legal/privacy
https://twitter.com/timescaledb?lang=en
https://www.youtube.com/channel/UCPmHSkid9IOYbdN1Psh24lg
https://github.com/timescale/
https://slack.timescale.com/
https://www.linkedin.com/company/timescaledb/
https://www.timescale.com/forum/
https://timescale.com/legal
https://timescale.com/legal/privacy
https://timescale.com/sitemap
https://www.timescale.com/legal/privacy

