
Thoughts, solicited and otherwise

Home Blog

Why people misuse inheritance
18 Mar, 2023

Jimmy Koppel wrote a thread about inheritance:

"The Flaws of Inheritance" by @CodeAesthetic1 is beautiful, as always.

Problem though, is that none of the things discussed in the video have anything to do
with inheritance

Time for a 🧵 on the most mind-bending construction in mainstream programming
languages https://t.co/oSpZJgyBTN

— Jimmy Koppel (@jimmykoppel) March 8, 2023

In the thread, he recalls the adage "prefer composition over inheritance". This is a well-known

principle of good OOP code, and yet inheritance is commonly used where composition would serve

better; the question that comes to my mind is, "Why?" I think I have at least a partial answer, but let

me meander a bit before getting to it.

The thread gives an example use case of a map that counts explicit insertions, which is the example

I'll use here. If you inherit and override the put() method, the behavior you get may be wrong, or may

be right in one version and wrong in the next. On the other hand, you didn't have to write a lot of

code.

(One post, an oldie but a goodie, that significantly influenced my thinking on this matter, suggests that

you should never override a method that was not designed to be overridden, and talks about how

building this into the language slightly improves ergonomics when you do override.)

Suppose I did the "right" thing and used composition (in this case, also delegation, and also the

decorator pattern, for people who think in GoF design patterns). I would have to implement the map

interface, calling down to a map implementation that stores the actual data. To implement the Map

interface in Java I would need to implement 25 methods! Most of them would be boilerplate, just

passing the arguments to the equivalent method on the delegate. Other languages are not better (the

Haskell Data.Map module has more than 100 functions).

https://solicited-thoughts.bearblog.dev/
https://solicited-thoughts.bearblog.dev/
https://solicited-thoughts.bearblog.dev/blog/
https://twitter.com/CodeAesthetic1?ref_src=twsrc%5Etfw
https://t.co/oSpZJgyBTN
https://twitter.com/jimmykoppel/status/1633333942492229634?ref_src=twsrc%5Etfw
https://twitter.com/jimmykoppel/status/1633344779994923010?s=20
https://twitter.com/jimmykoppel/status/1633347775269150723?s=20
https://journal.stuffwithstuff.com/2012/12/19/the-impoliteness-of-overriding-methods/
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://hackage.haskell.org/package/containers-0.6.7/docs/Data-Map-Lazy.html

This leads me to my answer: it often feels like less work to implement and less work to maintain an

inheritance-based approach than a composition/delegation-based one. Of course, the inheritance-

based one is often either outright wrong or a subtle bug waiting to happen, but that doesn't make it

feel any better to write over 20 methods of boilerplate.

So what's the alternative? I wish I could say "metaprogramming", but that's been around since the

'60s and still hasn't caught on as a common tool in most programmers' toolkits, so it can't be the real

answer. But it's so compelling: the pattern that you want is common and simple to describe, so why

can't you just write a program to do it? The next most plausible idea is "libraries/frameworks that do

the metaprogramming for you"; these certainly exist, but to my knowledge they don't reach critical

mass for widespread adoption. A partial solution is for libraries to offer a generic delegates for

interfaces, which will enable parsimonious and correct use of inheritance, but this puts additional

burden on every library implementation.

The actual answer that I want, as unlikely as it is to come to be, is "language support" (or at least

standardization on a specific library that solves the problem using the language's metaprogramming

facilities, which isn't that different). I expect that in a language that has such blessed, boilerplate-free

delegation tools, inheritance will be less overused.

In the mean time, what should you do?

Remember that subtly wrong behavior and bugs-waiting-to-happen are also maintenance

burdens, and they are worse than boilerplate.

Learn your language's metaprogramming facilities and see if there is enough value in using

them to reduce the boilerplate.

If you maintain a large codebase, look for and standardize use of a library that solves the

problem in your language (or possibly write one).

If you're developing a language or standard library, consider adding a feature that reduces the

boilerplate in common delegation scenarios.

If you're doing programming language research, this is probably not news to you; you might

enjoy reading this tangentially related post about a related problem in Haskell or this OCaml

paper that inspired it.

▵ Toast this post - 2 toasts

Made with Bear ʕ•ᴥ•ʔ

https://ro-che.info/articles/2016-02-03-finally-tagless-boilerplate
https://okmij.org/ftp/meta-programming/quel.pdf
https://bearblog.dev/

