e QVERFLOW _

Essays, opinions, and advice onthe act of
computer programming from Stack
Overflow.

Find something

Latest Newsletter Podcast Company

code-for-a-living ~ FEBRUARY 27, 2023

Stop saying “technical debt”

Everyone who says "tech debt" assumes they know what we’re all talking about, but their individual pictures
differ quite a bit.

ﬁ Chelsea Troy

Customize settings

https://stackoverflow.blog/
https://stackoverflow.com/users/email/settings/current?__hstc=188987252.a2a4dcb0f856fe0e4513d47d380b0d26.1568193729712.1580289678034.1580299209983.129&__hssc=188987252.1.1580299209983&__hsfp=1774503237
https://stackoverflow.blog/feed/
https://twitter.com/stackoverflow
https://stackoverflow.com/
https://stackoverflow.blog/
https://stackoverflow.blog/newsletter/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/company/
https://stackoverflow.blog/code-for-a-living/
https://stackoverflow.blog/author/chelsea-troy/
https://stackoverflow.blog/2023/02/27/stop-saying-technical-debt/
https://stackoverflow.com/legal/cookie-policy

We were supposed to release this feature three weeks ago.

One developer got caught in aframework update. Another got stuck reorganizing the feature flags.A
third needed to spelunk along-abandoned repository toinitiate the database changes. The team is
underwater. Every feature release will feel like this until we get a few weeks to dig ourselves out of tech
debt.We have no idea how to even get the business to consider that.

Does this sound familiar? It’s a disheartening conversation.

But we often predispose ourselves to this situation.How? We try to get businesspeople, designers,
product managers, and engineers onto the same page by using the phrase “tech debt.” But that phrase
puts us on completely different pages.

Ask someonein tech if they’ve heard of tech debt, and they’re likely to respond with a knowing sigh. Now
ask them what it is. Do this ten times, | dare you. How many different answers do you get? Three? Four?
Seven?

Everybody associates the term with a feeling—frustration, usually—but they don’t have a precise idea of
where that feeling comes from.So they slap the term onto whatever happens to bother or frighten
them. Designers say it means the design can’t look the way they planned it. Product folks lament how it
means they lose three weeks and get no features out of the deal.Engineers? Their answers vary the most,
but often they’ve got something to say about “bad code” We’'ll return to why “tech debt equals bad
code” is such ascourge, but first we have to address the effect of a bunch of different people defining the
same term differently in the first place.

Here’s the effect: the minute we trot out the term “tech debt,” everyoneis upset but no oneis listening.
Each conversant assumes they know what we’re all talking about, but their individual pictures differ
quite abit. It sounds to the business like the engineers are asking for three weeks free from the
obligation to release any features. They remember the last time they granted those weeks: within a
month the team was underwater again.When businesspeople don’t want to grant a “tech debt week”
because they saw with their own eyeballs that the last one improved the team’s capacity zero percent,
how can we expectthem to grant us another one with alacrity?

~

logy.And we can find that terminology by dissecting

)ad code

into traps.It allows us to assume that the prior
icharitable, but fine, until we realize that there was
s constraint explains the loathsome characteristics of this
n genius solution.

https://stackoverflow.com/legal/cookie-policy

| once worked on ateam that complained ad infinitum that customer information required a query that
drew from two different tables. The team assumed that the structure remained in place because of
inertia or because changing the database structure had backward compatibility implications. After
spending a non-negligible amount of time bashing the database design and dreaming up ways to fixit,
the team learned that their plan was...illegal. For privacy reasons in their industry, it’s illegal to store
these two particular pieces of personally identifying datain the same table. Luckily, a product manager
happened to mention the situation to alawyer at the company before the engineering team got very far,

or it might have been a showstopping complianceissue.

Equating tech debt to bad code also allows us to believe that if we just write good enough code, we
won’t have tech debt.So we don’t spend time eliminating any. There’s no need to revisit, document, or
test this code;it’s just that good.Ayear later, we’re back where we started. Whoops.

Equating tech debt to bad code also allows us to conflate “this code doesn’t match my personal
preferences” with “this codeis a problem”—which, again, is fine, until we’re under a time constraint. We
spend “tech debt week” doing our pet refactors instead of actually fixing anything. Engineers love tech
debt week because they get to chase down their personal bugaboos. The thing is, those bugaboos rarely
intersect with the code’s most pressing maintenance challenges. So when each engineer finishes their
gang-of-four-fueled refactoring bender, the codeis no easier to work in than it was before:it’s just
different, so no one besides the refactorer knows it as well anymore. Fantastic. A+.No notes.

In all seriousness, thisis a huge reason that spending three weeks paying down tech debt, carte blanche,
often does little or nothing for the team’s velocity after those weeks have ended.

To fixthese problems, choose something measurable to evaluate the quality of the system. My
recommendation: maintenance load. How much time and effort are developers spending on tasks that
are notadding features or removing features? We can talk to folks outside the engineering team about
that number. If we have six developers but half of our work is maintenance work, then our feature plan
can only assume three developers. Business people think of engineers as expensive, so this framing
motivates them to help us decrease our maintenance load.

We can also track that number and determine how fast it grows over time. The faster our maintenance

. Zero growth means that we can always maintain the

aring team.

' With good code stewardship practices. We rarely reward,
1at we do feature development skills. But code

vering context from code, and designing for future

hat hums along for a decade or more and a team that

ankruptcy, rewrites, and despair.

https://chelseatroy.com/2021/01/14/quantifying-technical-debt/
https://chelseatroy.com/2021/10/29/a-rubric-for-evaluating-team-members-contributions-to-a-maintainable-code-base/

The Holy Grail? Negative maintenance load growth: the kind of growth that makes our code more
maintainable over time instead of less. The Grail requires even more of the team than a healthy quotidian
code stewardship routine. It requires us to look at individual maintenance tasks, track their origins, and
address those problems at the source. These chores, backed by empirical evidence, give us something
concrete to discuss in meetings about tech debt.

Are we performing lots of routine library or framework updates right now? Maybe we need to explicitly
set asidetimeon arecurring basisto complete those. The more these pile up, the harder it becomes to
debug theinteractions between releases of different libraries.And the less programmers perform these,
the more out of practice they remain—which makes the update rockier and more painful at the last
possible second, when the update becomes mandatory.

Are we reaching into abandoned repositories and figuring out how to make a change? Maybe we need to
devote effort to recapturing information about how those repositories work.It’s common for
development to become much harder after some seminal team member leaves because it turns out they
knew a lot of critical information that wasn’t written down or organized anywhere.| call this a context
loss event, and we have no idea how maintainable a code base really is until it survives one of these. After
acontext loss event, developers need to proactively assess and repair the damage doneto theteam’s
shared knowledge before unfamiliar parts of the code base become dark and scary.

Are we constantly working around an architectural choice from the past based on assumptions about our
domain that are no longer true? Maybe we need to create and prioritize a ticket for rearchitecting that.A
resilient code design considers what types of changes the team expects to makein the future, and it
allocates flexibility in those parts of the code. As with any task that involves predicting the future,
sometimes we get it wrong.In those cases, we might need to change our design. That may require a
dedicated effort.

How do we identify and prioritize chores like these? | have a whole self-paced online course about that,
but even focusing on maintenance load in units of specific chores, rather than a unitary towering
thundercloud of “tech debt,” gives us a better place to start addressing it.

We wantfeature development to feel smooth and effortless. The longer we put off maintenance work,

Jnent will be. Rather than sweep all of those tasks under a
(for time to deal with it as one unit, we can track what
wvelopment to take longer, measure them in terms of the
1d then negotiate their completion as individual tasks
y.We’re no longer framing them as an opaque and

early circumscribed investments in our ability to produce
sonthesame page.lt also increases the likelihood that:

do the maintenance work

ding the maintenance work

https://stackoverflow.blog/2022/05/19/crystal-balls-and-clairvoyance-future-proofing-in-a-world-of-inevitable-change/
https://chelseatroy.thinkific.com/courses/technical-debt-an-analytical-approach

e Themaintenance work, having been selected from the real reasons that feature development
slowed down, will actually improve the feature development experience for the future

And that makes the conversation about tech debt alot less disheartening; It might even make it
hopeful.

Tags: code maintenance, technical debt

llyy,

Related

https://stackoverflow.blog/tag/code-maintenance/
https://stackoverflow.blog/tag/technical-debt/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/

code-for-a-living ~ FEBRUARY 16, 2023

Monitoring debt builds up faster than software teams can pay it off

Today, it’s easier than ever for ateam to monitor software in production. But it's also easy to build up a lot of
tech debt around monitoring.

JeanYang

20 Comments

Jason C 27 Feb 23 at 10:51

I’ve never heard or seen this phrase before this blog article.| think I’m going to start saying it now.

Reply

Aaron Newman 27 Feb 23 at 1:40

I’ve always used ‘Technical Debt’ to mean dependencies on technology that are obsolete or deprecated.

I’ve never heard it to mean ‘bad code’. It could mean old code doesn’t handle new use cases.Maybe some

good practices can minimize the amount of rework required to update to new technologies. Eliminating it
altogether seems akinto predicting the future.

Handling technical debt isrequired for complex systems that work over long periods of time, if those
systems are not to become obsolete themselves.You can stop using the phrase but that won’t fix any
problemsonthe ground.

Renlv
-

27 Feb 23 at 5:24

.and stop using it when talking to non programmers, the
: OOP and asynchronous functions.

https://stackoverflow.blog/code-for-a-living/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/
https://stackoverflow.blog/author/jean-yang/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/
https://github.com/AaronDavidNewman

Kevin 28 Feb 23 at 1:16

It’s called technical debt because it’s analogous to financial debt. Business owners need to understand
and reckon with it.

Reply

Giorgio Migliaccio 28 Feb 23 at 2:29

Exactly, technical debt, whatever name you would give it, actually exists, and ‘bad code’ perhapsis a
phrase we shouldn’t use, but everything ever developed is circumstantial and contextual.

For urgent release reasons, some shortcutsin the code were willingly added, and ‘should be addressed’
inthe future for example.Or, as you mentioned, quite some dependencies on libraries are pretty
outdated and more often than not, this might bring its fair share of effort needed to put inupdating your
code.

Twice | did and upgrade of ‘outdated’ NET 4.5 code tothe newer NET Core 3.for a huge business
application this took us 4 FTE’s more than 6 months before it was working fine.But also sometimes a
‘simple’ dependency, and inits slipstream awhole lot transitive dependencies might bring a whole lot of
reworking.

But this can’t be prevented in any thinkable way, this is just part of the job and technology.

If this should be addressed in a‘3-week tech debt’ period on the other hand, is also something more
mature tech companiesdon’t tend to do (anymore).

They just identify these ‘problem areas’ and place it as stories on the backlog, so it can be estimated and
planned in.

They’re just new work items needing to be addressed, nothing to be ashamed of, nothing to be
disappointed in, just part of the nature of development.

Reply

Michael P 28 Feb 23 at 6:27

Jince generally nor outdated dependencies.It’sthe
nce over sustainable design:

27 Feb 23 at 3:15

Jof aconversation, not the end of one.

https://en.wikipedia.org/wiki/Technical_debt

| am reminded of the phrase “premature optimization,” sometimes used as an excuse for refusing to
consider performance in your software designs. Like “technical debt,” this phrase is meant to start a
conversation, not end it.Despite these phrases having the potential for abuse, there are genuine reasons
why you might want to invoke them.

The considerate software engineer, having used one of these phrasesin a conversation, must then explain
specifically what they mean, starting with the legitimate premise that the conditions described by either
phrase can cost the organization time and money if they are not managed properly.

The phrase “code smell” doesn’t have any technical meaning at all, but everyone who uses it knows what it
means: a sense of uneasiness. The problems arise when inexperienced developers ascribe more meaning to
these phrases than they should, or confer more authority to these phrases than they really have.There’s no
“official” basis for a “code smell,” any more than you can definitively identify “technical debt” or
“premature optimization” without more analysis.

Reply

Stephen Boesch 27 Feb 23 at 4:15
“Technical debt” has fairly clear meaning in established software / data engineering teams. *Weak testing

*Weak CI/CD *Limited commenting *Limited or no design/other technical docs *Refactoring should be done
(egviolating DRY).Apparently in other front-end or other types of teams it is more nebulous.

Reply

Andrew Cowenhoven 27 Feb 23 at 4:38
No.Don’t stop using the term. It is not a meaningless, hackneyed phrase. |t is atechnical term.Just, as you

always should, consider your audience before you use any technical term.And, of course, understand it
yourself. http://wiki.c2.com/?WardExplainsDebtMetaphor

Reply

27 Feb 23 at 4:57

oblems”.

ing during races because your shoes are untied, you’re
ie your shoes, ideally before the next race begins. '

ot peeve, or just amisunderstanding of how the code is
ibout it, is awhole different discussion, and that
1ether you continue to use the term “technical debt” or

http://wiki.c2.com/?WardExplainsDebtMetaphor

Reply

Daniel Craig 27 Feb 23 at 5:11

Saying “Technical Debt” considered harmful

Reply

Joshua 27 Feb 23 at 5:22

Betteridea:stop playing name games.

Reply

Victor Williams Stafusa da Silva 27 Feb 23 at 7:08

Technical debts are thingsthe TO DOs scattered around the code.If there isno TODO and the intent is just
to make it more elegant, then it is seldom worth the trouble. However, most of times, those TO DOs are
things that slow down the development team, limits the growth of the business, rises costs and some of
them are eventimed-bomb waiting to be either defused or detonated.

Thisfrequently have to do with bad code, but it is much more than that, and it is often to growth pains or
technology changes and requirements changes. Although technical debts frequently involves bad code,
equating them s just incorrect.

Moreover, having to always pay the technical debt and having the impression that we eventually are all
back tosquare one is part of the development process. It is disheartening, but it is unavoidable and even
necessary.As | say, “Technical debts are billed with high interest fees” and refusing to pay them only makes
them growing larger and larger until they eventually become unpayable.

If the business people don’t understand that things leftincomplete, undone or no longer satisfactory
_needsto be maintained. then the business itself is doomed. | already saw several business go bankrupt
e because the focus was just to add feature over feature
stly done. The reason is because eventually the technical
added without introducing a lot of bugs that degrades all
1cluded. Eventually the system entersinto astate that
and be productive with it anymore and neither the
ed.All the effort goesinto trying to kill hydra-bugs (cut
1e business people only complains that no feature ever
lapse.All of this could be prevented if people understood
he technical debtsand that new features can’t be
lled.

Releasing new features without a solid code base to support them is the same as building another store in
the building without reinforcing the basement and the pillars of all the stores below. Business people who
can’t understand this simply are not worth of their business.

Everyone will always work underwater because the only dry land is a desert wasteland.And if being
underwateris bad, once you are indry land, you are out of the business.Business people and developers
must know that there are only three options:to swim, todrown orto die in the desert wasteland.Three
weeks of refactorisn’t enough and will never be.No amount of time and effort is enough, but thisis not a
reason to not invest any effort or time, quite the opposite actually.

Technical debts even have something to do with the second law of thermodynamics: The entropy of an
isolated system only grows. To keep the entropy under control, the only way is to transfer it to somewhere
else, and that somewhere else is the work, effort and time of the development team.

Reply

J.B. Rainsberger 28 Feb 23 at 5:24

| think “maintenance load” provides an interesting way to preserve the original intent of Technical Debt
(per Ward Cunningham) without obscuring the meaning too much. Part of the problem seemsto lie in this:
people forget that Technical Debt is an unavoidable consequence of the choice to build and deliver
featuresincrementally: we allow design to be simpler now in order to defer the part of the investment in
designthat just isn’t needed until we build that feature later.| see Technical Debt as a choice and a
strategy, but “maintenance load” seemstoinclude both Technical Debt and Cutting Corners.

Sadly, the Euphemism Treadmill always wins, so if “maintenance load” becomes popular, someone will
write an article about why we need to stop saying it....| predict around mid-2027.Maybe earlier.

Same as it ever was.Don’t give up!

Reply

Martin Ba 28 Feb 23 at 5:59

N
J

—pt, e.g.:https://youtu.be/piUesxuzklQ?t=163 (Refactoring
2022)

28 Feb 23 at 9:01

1previous team to remove the stigma from the phrase.

' choice between atactical solution and aslower but more
ice based onanumber of factors, including time or
“COMITerCial PressuTes, tecnical KMoWIeuge, vaiue placed on stability/performance/security/etc.

https://www.jbrains.ca/
https://youtu.be/piUesxuZkIQ?t=163
https://cmbuckley.co.uk/

Everyone owns this trade-off, and if the tactical optionis chosen, it’s on the promise to repay this debt.
There’s aresponsibility to be “better lenders” and not always choose the tactical option, but that
responsibility never sits solely with the technical members of the team.

Reply

Felix Rabinovich 28 Feb 23 at 11:46

Interesting... most of the people | talk to have pretty similar definition of technical debt.For example, we
would like torefactor the design of the database to take advantage of new capabilities (say, many-to-
many relationship in Entity Framework or Time Series tablesin SQL Server) - but we have interfaces or
reports that will make it prohibitively expensive.

But there is one statement here that makes me question credibility of the author. “For privacy reasonsin
theirindustry, it’sillegal to store these two particular pieces of personally identifying datain the same
table”.l worked with many standards (HIPPAA, GDPR, most recently, CJIS) - and | am yet to see any that
specifies anything about the *tables*. When you make up stuff like that, it makes me question other
premises of the post!

Reply

Kevin 28 Feb 23 at 1:14

Stop trying to normalize mediocrity.

Reply

Me 28 Feb 23 at 2:15

technical debt is mostly used from people who are not earning their living with programming but with
telling the bosses that everything is wrong and they could help to make it better.But never ever by doing
it better.

— -~

)

r

—d the code is, just to sell.
he gift from heaven to the world of programming.

28 Feb 23 at 3:02

dge Limit” —i.e., the number of times I’d make aquick
d it needed to be re-written properly.l think that’s a

http://www.honestillusion.com/

Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment *

Name *

Email *

Website

(J Save my name, email, and website in this browser for the next time | comment.

This site uses Akismet toreduce spam. Learn how your comment data is processed.

https://akismet.com/privacy/

