
Essays, opinions, and advice on the act of
computer programming from Stack

Overflow.

Latest Newsletter Podcast Company

code-for-a-living F EBRUARY 27, 2023

Stop saying “technical debt”
Everyone who says "tech debt" assumes they know what weʼre all talking about, but their individual pictures
di�er quite a bit.

Chelsea Troy

Find something

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

Accept all cookies

Necessary cookies only

Customize settings

https://stackoverflow.blog/
https://stackoverflow.com/users/email/settings/current?__hstc=188987252.a2a4dcb0f856fe0e4513d47d380b0d26.1568193729712.1580289678034.1580299209983.129&__hssc=188987252.1.1580299209983&__hsfp=1774503237
https://stackoverflow.blog/feed/
https://twitter.com/stackoverflow
https://stackoverflow.com/
https://stackoverflow.blog/
https://stackoverflow.blog/newsletter/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/company/
https://stackoverflow.blog/code-for-a-living/
https://stackoverflow.blog/author/chelsea-troy/
https://stackoverflow.blog/2023/02/27/stop-saying-technical-debt/
https://stackoverflow.com/legal/cookie-policy

We were supposed to release this feature three weeks ago.

One developer got caught in a framework update. Another got stuck reorganizing the feature flags. A
third needed to spelunk a long-abandoned repository to initiate the database changes. The team is
underwater. Every feature release will feel like this until we get a few weeks to dig ourselves out of tech
debt. We have no idea how to even get the business to consider that.

Does this sound familiar? It ʼs a disheartening conversation.

But we o�en predispose ourselves to this situation. How? We try to get businesspeople, designers,
product managers, and engineers onto the same page by using the phrase “tech debt.” But that phrase
puts us on completely di�erent pages.

Ask someone in tech if theyʼve heard of tech debt, and theyʼre likely to respond with a knowing sigh. Now
ask them what it is. Do this ten times, I dare you. How many di�erent answers do you get? Three? Four?
Seven?

Everybody associates the term with a feeling—frustration, usually—but they donʼt have a precise idea of
where that feeling comes from. So they slap the term onto whatever happens to bother or frighten
them. Designers say it means the design canʼt look the way they planned it . Product folks lament how it
means they lose three weeks and get no features out of the deal. Engineers? Their answers vary the most,
but o�en theyʼve got something to say about “bad code.” Weʼll return to why “tech debt equals bad
code” is such a scourge, but first we have to address the e�ect of a bunch of di�erent people defining the
same term di�erently in the first place.

Hereʼs the e�ect: the minute we trot out the term “tech debt,” everyone is upset but no one is listening.
Each conversant assumes they know what weʼre all talking about, but their individual pictures di�er
quite a bit. It sounds to the business like the engineers are asking for three weeks free from the
obligation to release any features. They remember the last t ime they granted those weeks: within a
month the team was underwater again. When businesspeople donʼt want to grant a “tech debt week”
because they saw with their own eyeballs that the last one improved the teamʼs capacity zero percent,
how can we expect them to grant us another one with alacrity?

We, the engineers, have to examine our terminology. And we can find that terminology by dissecting
what we mean when we say “tech debt.”

Tech debt is more than just bad code

Equating tech debt to bad code allows us to fall into traps. It allows us to assume that the prior
developers just sucked at their jobs—which is uncharitable, but fine, until we realize that there was
actually a constraint we didnʼt know about. This constraint explains the loathsome characteristics of this
code, and it also prevents us from doing our own genius solution.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://stackoverflow.com/legal/cookie-policy

I once worked on a team that complained ad infinitum that customer information required a query that
drew from two di�erent tables. The team assumed that the structure remained in place because of
inertia or because changing the database structure had backward compatibility implications. A�er
spending a non-negligible amount of t ime bashing the database design and dreaming up ways to fix it ,
the team learned that their plan was…illegal. For privacy reasons in their industry, it ʼs illegal to store
these two particular pieces of personally identifying data in the same table. Luckily, a product manager
happened to mention the situation to a lawyer at the company before the engineering team got very far,
or it might have been a showstopping compliance issue.

Equating tech debt to bad code also allows us to believe that if we just write good enough code, we
wonʼt have tech debt. So we donʼt spend time eliminating any. Thereʼs no need to revisit , document, or
test this code; it ʼs just that good. A year later, weʼre back where we started. Whoops.

Equating tech debt to bad code also allows us to conflate “this code doesnʼt match my personal
preferences” with “this code is a problem”—which, again, is fine, until weʼre under a t ime constraint. We
spend “tech debt week” doing our pet refactors instead of actually fixing anything. Engineers love tech
debt week because they get to chase down their personal bugaboos. The thing is, those bugaboos rarely
intersect with the codeʼs most pressing maintenance challenges. So when each engineer finishes their
gang-of-four-fueled refactoring bender, the code is no easier to work in than it was before: it ʼs just
di�erent, so no one besides the refactorer knows it as well anymore. Fantastic. A+. No notes.

In all seriousness, this is a huge reason that spending three weeks paying down tech debt, carte blanche,
o�en does little or nothing for the teamʼs velocity a�er those weeks have ended.

To fix these problems, choose something measurable to evaluate the quality of the system. My
recommendation: maintenance load. How much time and e�ort are developers spending on tasks that
are not adding features or removing features? We can talk to folks outside the engineering team about
that number. If we have six developers but half of our work is maintenance work, then our feature plan
can only assume three developers. Business people think of engineers as expensive, so this framing
motivates them to help us decrease our maintenance load.

We can also track that number and determine how fast it grows over t ime. The faster our maintenance
load grows, the more frustrations we can expect. Zero growth means that we can always maintain the
system with the same proportion of our engineering team.

Reclaiming your time

How do we minimize maintenance load growth? With good code stewardship practices. We rarely reward,
recognize, or teach code stewardship the way that we do feature development skills. But code
stewardship skills—documenting systems, recovering context from code, and designing for future
changes—make the di�erence between a team that hums along for a decade or more and a team that
repeatedly mires itself in declarations of code bankruptcy, rewrites, and despair.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://chelseatroy.com/2021/01/14/quantifying-technical-debt/
https://chelseatroy.com/2021/10/29/a-rubric-for-evaluating-team-members-contributions-to-a-maintainable-code-base/

The Holy Grail? Negative maintenance load growth: the kind of growth that makes our code more
maintainable over t ime instead of less. The Grail requires even more of the team than a healthy quotidian
code stewardship routine. It requires us to look at individual maintenance tasks, track their origins, and
address those problems at the source. These chores, backed by empirical evidence, give us something
concrete to discuss in meetings about tech debt.

Are we performing lots of routine library or framework updates right now? Maybe we need to explicitly
set aside time on a recurring basis to complete those. The more these pile up, the harder it becomes to
debug the interactions between releases of di�erent libraries. And the less programmers perform these,
the more out of practice they remain—which makes the update rockier and more painful at the last
possible second, when the update becomes mandatory.

Are we reaching into abandoned repositories and figuring out how to make a change? Maybe we need to
devote e�ort to recapturing information about how those repositories work. It ʼs common for
development to become much harder a�er some seminal team member leaves because it turns out they
knew a lot of crit ical information that wasnʼt written down or organized anywhere. I call this a context
loss event, and we have no idea how maintainable a code base really is until it survives one of these. A�er
a context loss event, developers need to proactively assess and repair the damage done to the teamʼs
shared knowledge before unfamiliar parts of the code base become dark and scary.

Are we constantly working around an architectural choice from the past based on assumptions about our
domain that are no longer true? Maybe we need to create and priorit ize a t icket for rearchitecting that. A
resilient code design considers what types of changes the team expects to make in the future, and it
allocates flexibility in those parts of the code. As with any task that involves predicting the future,
sometimes we get it wrong. In those cases, we might need to change our design. That may require a
dedicated e�ort.

How do we identify and priorit ize chores like these? I have a whole self-paced online course about that,
but even focusing on maintenance load in units of specific chores, rather than a unitary towering
thundercloud of “tech debt,” gives us a better place to start addressing it .

We want feature development to feel smooth and e�ortless. The longer we put o� maintenance work,
the less smooth and e�ortless feature development will be. Rather than sweep all of those tasks under a
rug called “tech debt” and then occasionally ask for t ime to deal with it as one unit, we can track what
specific elements of the system force feature development to take longer, measure them in terms of the
amount of developer e�ort that they require, and then negotiate their completion as individual tasks
with attractive outcomes for developer capacity. Weʼre no longer framing them as an opaque and
uncertain cost. Weʼre instead framing them as clearly circumscribed investments in our ability to produce
impactful features. That conversation puts folks on the same page. It also increases the likelihood that:

Engineers can allocate specific t ime to do the maintenance work

Engineers will even be recognized for doing the maintenance work

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://stackoverflow.blog/2022/05/19/crystal-balls-and-clairvoyance-future-proofing-in-a-world-of-inevitable-change/
https://chelseatroy.thinkific.com/courses/technical-debt-an-analytical-approach

The maintenance work, having been selected from the real reasons that feature development
slowed down, will actually improve the feature development experience for the future

And that makes the conversation about tech debt a lot less disheartening; It might even make it
hopeful.

Tags: code maintenance, technical debt

The Stack Overf low Podcast is a weekly conversation about working in so�ware
development, learning to code, and the art and culture of computer
programming.

Related

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://stackoverflow.blog/tag/code-maintenance/
https://stackoverflow.blog/tag/technical-debt/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/podcast/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/

code-for-a-living F EBRUARY 16, 2023

Monitoring debt builds up faster than software teams can pay it off

Today, itʼs easier than ever for a team to monitor so�ware in production. But it's also easy to build up a lot of
tech debt around monitoring.

Jean Yang

20 Comments

 Jason C 27 Feb 23 at 10:51

Iʼve never heard or seen this phrase before this blog article. I think Iʼm going to start saying it now.

Reply

 Aaron Newman 27 Feb 23 at 1:40

Iʼve always used ʻTechnical Debtʼ to mean dependencies on technology that are obsolete or deprecated.
Iʼve never heard it to mean ʻbad code .̓ It could mean old code doesnʼt handle new use cases. Maybe some
good practices can minimize the amount of rework required to update to new technologies. Eliminating it
altogether seems akin to predicting the future.

Handling technical debt is required for complex systems that work over long periods of time, if those
systems are not to become obsolete themselves. You can stop using the phrase but that wonʼt fix any
problems on the ground.

Reply

 as 27 Feb 23 at 5:24

yeah, how about people just stop using it wrong. and stop using it when talking to non programmers, the
same way you woulndʼt start telling them about OOP and asynchronous functions.

Reply

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://stackoverflow.blog/code-for-a-living/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/
https://stackoverflow.blog/author/jean-yang/
https://stackoverflow.blog/2023/02/16/monitoring-debt-builds-up-faster-than-software-teams-can-pay-it-off/
https://github.com/AaronDavidNewman

 Kevin 28 Feb 23 at 1:16

Itʼs called technical debt because itʼs analogous to financial debt. Business owners need to understand
and reckon with it.

Reply

 Giorgio Migliaccio 28 Feb 23 at 2:29

Exactly, technical debt, whatever name you would give it, actually exists, and ʻbad codeʼ perhaps is a
phrase we shouldnʼt use, but everything ever developed is circumstantial and contextual.
For urgent release reasons, some shortcuts in the code were willingly added, and ʻshould be addressedʼ
in the future for example. Or, as you mentioned, quite some dependencies on libraries are pretty
outdated and more o�en than not, this might bring its fair share of e�ort needed to put in updating your
code.
Twice I did and upgrade of ʻoutdatedʼ .NET 4.5 code to the newer .NET Core 3. for a huge business
application this took us 4 FTEʼs more than 6 months before it was working fine. But also sometimes a
ʻsimpleʼ dependency, and in its slipstream a whole lot transitive dependencies might bring a whole lot of
reworking.
But this canʼt be prevented in any thinkable way, this is just part of the job and technology.
If this should be addressed in a ʻ3-week tech debtʼ period on the other hand, is also something more
mature tech companies donʼt tend to do (anymore).
They just identify these ʻproblem areasʼ and place it as stories on the backlog, so it can be estimated and
planned in.
Theyʼre just new work items needing to be addressed, nothing to be ashamed of, nothing to be
disappointed in, just part of the nature of development.

Reply

 Michael P 28 Feb 23 at 6:27

Technical debt is neither bad code nor maintenance generally nor outdated dependencies. Itʼs the
summed results of trading immediate convenience over sustainable design:
https://en.wikipedia.org/wiki/Technical_debt

Reply

 Robert Harvey 27 Feb 23 at 3:15

The phrase “Technical Debt” should be the start of a conversation, not the end of one.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://en.wikipedia.org/wiki/Technical_debt

I am reminded of the phrase “premature optimization,” sometimes used as an excuse for refusing to
consider performance in your so�ware designs. Like “technical debt,” this phrase is meant to start a
conversation, not end it. Despite these phrases having the potential for abuse, there are genuine reasons
why you might want to invoke them.

The considerate so�ware engineer, having used one of these phrases in a conversation, must then explain
specifically what they mean, starting with the legitimate premise that the conditions described by either
phrase can cost the organization time and money if they are not managed properly.

The phrase “code smell” doesnʼt have any technical meaning at all, but everyone who uses it knows what it
means: a sense of uneasiness. The problems arise when inexperienced developers ascribe more meaning to
these phrases than they should, or confer more authority to these phrases than they really have. Thereʼs no
“o�icial” basis for a “code smell,” any more than you can definitively identify “technical debt” or
“premature optimization” without more analysis.

Reply

 Stephen Boesch 27 Feb 23 at 4:15

“Technical debt” has fairly clear meaning in established so�ware / data engineering teams. *Weak testing
*Weak CI/CD *Limited commenting *Limited or no design/other technical docs *Refactoring should be done
(eg violating DRY). Apparently in other front-end or other types of teams it is more nebulous.

Reply

 Andrew Cowenhoven 27 Feb 23 at 4:38

No. Donʼt stop using the term. It is not a meaningless, hackneyed phrase. It is a technical term. Just, as you
always should, consider your audience before you use any technical term. And, of course, understand it
yourself. http://wiki.c2.com/?WardExplainsDebtMetaphor

Reply

 Jeremy Friesner 27 Feb 23 at 4:57

“technical debt” is a synonym for “unresolved problems”.

If youʼre a runner, and you keep tripping and falling during races because your shoes are untied, youʼre
su�ering from technical debt. The solution is to tie your shoes, ideally before the next race begins.

What constitutes a real problem (vs a personal pet peeve, or just a misunderstanding of how the code is
supposed to work), and what (if anything) to do about it, is a whole di�erent discussion, and that
discussion will remain necessary regardless of whether you continue to use the term “technical debt” or
not.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

http://wiki.c2.com/?WardExplainsDebtMetaphor

Reply

 Daniel Craig 27 Feb 23 at 5:11

Saying “Technical Debt” considered harmful

Reply

 Joshua 27 Feb 23 at 5:22

Better idea: stop playing name games.

Reply

 Victor Williams Staf usa da Silva 27 Feb 23 at 7:08

Technical debts are things the TO DOs scattered around the code. If there is no TO DO and the intent is just
to make it more elegant, then it is seldom worth the trouble. However, most of times, those TO DOs are
things that slow down the development team, limits the growth of the business, rises costs and some of
them are even timed-bomb waiting to be either defused or detonated.

This frequently have to do with bad code, but it is much more than that, and it is o�en to growth pains or
technology changes and requirements changes. Although technical debts frequently involves bad code,
equating them is just incorrect.

Moreover, having to always pay the technical debt and having the impression that we eventually are all
back to square one is part of the development process. It is disheartening, but it is unavoidable and even
necessary. As I say, “Technical debts are billed with high interest fees” and refusing to pay them only makes
them growing larger and larger until they eventually become unpayable.

If the business people donʼt understand that things le� incomplete, undone or no longer satisfactory
needs to be maintained, then the business itself is doomed. I already saw several business go bankrupt
due to their inability to improve their legacy code because the focus was just to add feature over feature
over feature without ever revisiting what was hastly done. The reason is because eventually the technical
debts become so huge that no feature could be added without introducing a lot of bugs that degrades all
the other features and even the very one being included. Eventually the system enters into a state that
nobody in the development team is able to work and be productive with it anymore and neither the
refactorings nor the new features are implemented. All the e�ort goes into trying to kill hydra-bugs (cut
one head, two new heads born in its place) and the business people only complains that no feature ever
gets implemented. Then, the next step is the collapse. All of this could be prevented if people understood
that e�ort and time MUST be spent into paying the technical debts and that new features canʼt be
implemented decently if that debt is not controlled.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

Releasing new features without a solid code base to support them is the same as building another store in
the building without reinforcing the basement and the pillars of all the stores below. Business people who
canʼt understand this simply are not worth of their business.

Everyone will always work underwater because the only dry land is a desert wasteland. And if being
underwater is bad, once you are in dry land, you are out of the business. Business people and developers
must know that there are only three options: to swim, to drown or to die in the desert wasteland. Three
weeks of refactor isnʼt enough and will never be. No amount of time and e�ort is enough, but this is not a
reason to not invest any e�ort or time, quite the opposite actually.

Technical debts even have something to do with the second law of thermodynamics: The entropy of an
isolated system only grows. To keep the entropy under control, the only way is to transfer it to somewhere
else, and that somewhere else is the work, e�ort and time of the development team.

Reply

 J. B. Rainsberger 28 Feb 23 at 5:24

I think “maintenance load” provides an interesting way to preserve the original intent of Technical Debt
(per Ward Cunningham) without obscuring the meaning too much. Part of the problem seems to lie in this:
people forget that Technical Debt is an unavoidable consequence of the choice to build and deliver
features incrementally: we allow design to be simpler now in order to defer the part of the investment in
design that just isnʼt needed until we build that feature later. I see Technical Debt as a choice and a
strategy, but “maintenance load” seems to include both Technical Debt and Cutting Corners.

Sadly, the Euphemism Treadmill always wins, so if “maintenance load” becomes popular, someone will
write an article about why we need to stop saying it…. I predict around mid-2027. Maybe earlier.

Same as it ever was. Donʼt give up!

Reply

 Martin Ba 28 Feb 23 at 5:59

Kevlin has talked repeatedly about technical debt, e.g. : https://youtu.be/piUesxuZkIQ?t=163 (Refactoring
Is Not Just Clickbait – Kevlin Henney – NDC Oslo 2022)

Reply

 Chris Buckley 28 Feb 23 at 9:01

We went as far as renaming it “business debt” in a previous team to remove the stigma from the phrase.
Technical debt is about the conscious, collective choice between a tactical solution and a slower but more
robust approach. The whole team makes the choice based on a number of factors, including time or
commercial pressures, technical knowledge, value placed on stability/performance/security/etc.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://www.jbrains.ca/
https://youtu.be/piUesxuZkIQ?t=163
https://cmbuckley.co.uk/

Everyone owns this trade-o�, and if the tactical option is chosen, itʼs on the promise to repay this debt.
Thereʼs a responsibility to be “better lenders” and not always choose the tactical option, but that
responsibility never sits solely with the technical members of the team.

Reply

 Felix Rabinovich 28 Feb 23 at 11:46

Interesting… most of the people I talk to have pretty similar definition of technical debt. For example, we
would like to refactor the design of the database to take advantage of new capabilities (say, many-to-
many relationship in Entity Framework or Time Series tables in SQL Server) – but we have interfaces or
reports that will make it prohibitively expensive.

But there is one statement here that makes me question credibility of the author. “For privacy reasons in
their industry, itʼs illegal to store these two particular pieces of personally identifying data in the same
table”. I worked with many standards (HIPPAA, GDPR, most recently, CJIS) – and I am yet to see any that
specifies anything about the *tables*. When you make up stu� like that, it makes me question other
premises of the post!

Reply

 Kevin 28 Feb 23 at 1:14

Stop trying to normalize mediocrity.

Reply

 Me 28 Feb 23 at 2:15

technical debt is mostly used from people who are not earning their living with programming but with
telling the bosses that everything is wrong and they could help to make it better. But never ever by doing
it better.
Or from tools which are telling everybody how bad the code is, just to sell.
technical debt is from ***holes to show them as the gi� from heaven to the world of programming.

Reply

 James Curran 28 Feb 23 at 3:02

Way back in the late ʼ80s, I created the term “Kludge Limit” — i.e., the number of times Iʼd make a quick
patch to some problematic code before I decided it needed to be re-written properly. I think thatʼs a
better term for the concept.

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

http://www.honestillusion.com/

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment *

Name *

Email *

Website

Save my name, email, and website in this browser for the next time I comment.

Post Comment

Your privacy
By clicking “Accept all cookies”, you agree Stack Exchange
can store cookies on your device and disclose information
in accordance with our Cookie Policy.

https://akismet.com/privacy/

