
The lone developer problem
by Evan Hahn, posted Feb 27, 2023

In short: in my experience, if a single programmer builds something,

it’s often hard for others to maintain later. There are several possible

reasons why. Even great programmers fall into this trap!

This post is anecdotal from my own experience, so it might not be

right or apply to you. But here goes:

A lot of software is built by one person. It might be an entire product

built by a lone developer or a significant piece of a system.

When this happens, I’ve observed that code written by a single

developer is usually hard for others to work with. This code

must’ve made sense to the author, who I think is very smart, but it

doesn’t make any sense to me!

I’m not an amazing programmer but I see this happen to myself all

the time. I look at code I wrote a year ago and often find it confusing.

What was I thinking when I wrote this?

I’ve started calling this the “lone developer problem”.

https://evanhahn.com/


Why does this happen?

I don’t know, but I suspect this happens for a few reasons:

When a single programmer understands all the pieces, they can

tie them together in ways that make sense to them. The author

sees a well-integrated system but a future reader sees spaghetti

code.

One-person projects often have different requirements. Small

projects might be scrambling for their first ten users; large teams

might be trying to capture their next million. Code quality is often

less important during the “scramble” phase.

Code review can be a useful way to catch bugs and design

flaws, but the lone programmer can’t easily do this.

Relatedly, it’s it’s easier to have bad ideas if you don’t have to

explain them. And it’s impossible to get someone else’s good

ideas when there’s no one else around!

There are probably other reasons, and these are all just guesses.

Solutions?

The obvious mitigation strategy: bring in another developer. Have

them review your code or pair with you.



If you can’t do that, open-sourcing your code might pressure you to

avoid some of these traps.

I’ll add that you may not really want to solve this problem. You don’t

always need to write good code! For example, you probably

shouldn’t prioritize code quality during a hackathon. (Of course, you

probably want good code sooner than you think.)

Again, this post is entirely from my own perspective, and is not

based on hard evidence. Your experience might be totally different!

But maybe you’ve also run into the lone developer problem.

About me Contact Projects Guides Blog

Content is licensed under the Creative Commons Attribution-NonCommercial
License and code under the Unlicense. The logo was created by Lulu Tang.

https://evanhahn.com/on-multi-paradigm-languages/
https://evanhahn.com/
https://evanhahn.com/about/
https://evanhahn.com/contact/
https://evanhahn.com/projects/
https://evanhahn.com/guides/
https://evanhahn.com/blog/
https://creativecommons.org/licenses/by-nc/4.0/
https://unlicense.org/
http://luluspice.com/

