
READING TIME • 1� MIN

I'm All-In on Server-Side SQLite

I'm Ben Johnson. I wrote BoltDB, �n embedded
d�t�b�se th�t is the b�ckend for systems like
etcd. Now I work �t Fly.io, on Litestre�m.
Litestre�m is �n open-source project th�t m�kes
SQLite ten�ble for full-st�ck �pplic�tions
through the power of ✨replic�tion✨. If you c�n
set up � SQLite d�t�b�se, you c�n get
Litestre�m working in less th�n 10 minutes.

The convention�l wisdom of full-st�ck �pplic�tions is the n-

tier �rchitecture, which is now so common th�t it's e�sy to

forget it even h�s � n�me. It's wh�t you're doing when you

run �n "�pplic�tion server" like R�ils, Dj�ngo, or Remix

�longside � "d�t�b�se server" like Postgres. According to the

convention�l wisdom, SQLite h�s � pl�ce in this �rchitecture:

�s � pl�ce to run unit tests.

Annie Ruygt

https://twitter.com/share?text=I%27m%20All-In%20on%20Server-Side%20SQLite&url=https://fly.io/blog/all-in-on-sqlite-litestream/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/all-in-on-sqlite-litestream/&t=I%27m%20All-In%20on%20Server-Side%20SQLite
http://www.reddit.com/submit?url=https://fly.io/blog/all-in-on-sqlite-litestream/&title=I%27m%20All-In%20on%20Server-Side%20SQLite
https://fly.io/
https://litestream.io/
https://fly.io/docs/speedrun/
https://annieruygtillustration.com/
https://fly.io/
https://fly.io/blog/

The convention�l wisdom could use some upd�ting. I think

th�t for m�ny �pplic�tions – production �pplic�tions, with

l�rge numbers of users �nd high �v�il�bility requirements –

 SQLite h�s � better pl�ce, in the center of the st�ck, �s the

core of your d�t� �nd persistence l�yer.

It's � big cl�im. It m�y not hold for your �pplic�tion. But you

should consider it, �nd I'm here to tell you why.

50 ye�rs is not � long time. In th�t time, we've seen �

st�ggering �mount of ch�nge in how our softw�re m�n�ges

d�t�.

In the beginning of our story, b�ck in the '70s, there were

Codd's rules, defining wh�t we now c�ll "rel�tion�l

d�t�b�ses", �lso known tod�y �s "d�t�b�ses". You know

them, even if you don't: �ll d�t� lives in t�bles; t�bles h�ve

columns, �nd rows �re �ddress�ble with keys; C.R.U.D.;

schem�s; � textu�l l�ngu�ge to convey these concepts. The

l�ngu�ge, of course, is SQL, which prompted � C�mbri�n

explosion of SQL d�t�b�ses, from Or�cle to DB2 to

Postgres to MySQL, throughout the '80s �nd '�0s.

It h�sn't �ll been good. The 2000s got us XML d�t�b�ses.

But our industry �toned by building some gre�t column�r

d�t�b�ses during the s�me time. By the 2010s, we s�w

dozens of l�rge-sc�le, open-source distributed d�t�b�se

projects come to m�rket. Now �nyone c�n spin up � cluster

�nd query ter�bytes of d�t�.

As d�t�b�ses evolved, so too did the str�tegies we use to

plug them in to our �pplic�tions. Almost since Codd, we've

divided those �pps into tiers. First c�me the d�t�b�se tier.

L�ter, with memc�ched �nd Redis, we got the c�ching tier.

We've got b�ckground job tiers �nd we've got routing tiers

A Brief History of Application

Databases

https://www.oreilly.com/library/view/sql-in-a/9780596155322/ch01s01s01.html
https://en.wikipedia.org/wiki/Relational_database
https://www.vertica.com/secrets-behind-verticas-performance/
https://memcached.org/
https://redis.io/
https://sidekiq.org/
https://www.pgbouncer.org/

�nd distribution tiers. The tutori�ls pretend th�t there �re 3

tiers, but we �ll know it's c�lled "n-tier" bec�use nobody c�n

predict how m�ny tiers we're going to end up with.

You know where we're going with this. Our scientists were

so preoccupied with whether or not they could, �nd so on.

See, over these s�me five dec�des, we've �lso seen CPUs,

memory, & disks become hundreds of times f�ster �nd

che�per. A term th�t pr�ctic�lly defines d�t�b�se innov�tion

in the 2010s is "big d�t�". But h�rdw�re improvements h�ve

m�de th�t concept slippery in the 2020s. M�n�ging � 1 GB

d�t�b�se in 1���? A big de�l. In 2022? Run it on your l�ptop,

or � t3.micro.

When we think �bout new d�t�b�se �rchitectures, we're

hypnotized by sc�ling limits. If it c�n't h�ndle pet�bytes, or �t

le�st ter�bytes, it's not in the convers�tion. But most

�pplic�tions will never see � ter�byte of d�t�, even if they're

successful. We're using j�ckh�mmers to drive finish n�ils.

There's � d�t�b�se th�t bucks � lot of these trends. It's one

of the most popul�r SQL d�t�b�ses in the world, so

st�nd�rdized it's �n offici�l �rchiv�l form�t of the Libr�ry of

Congress, it's renowned for its reli�bility �nd its unf�thom�bly

encomp�ssing test suite, �nd its perform�nce is so good

th�t citing its metrics on � mess�ge bo�rd inv�ri�bly st�rts

�n �rgument �bout whether it should be disqu�lified. I

prob�bly don't h�ve to n�me it for you, but, for the one

person in the b�ck with their h�nd r�ised, I'm t�lking �bout

SQLite.

SQLite is �n embedded d�t�b�se. It doesn't live in �

convention�l �rchitectur�l tier; it's just � libr�ry, linked into

your �pplic�tion server's process. It's the st�nd�rd be�rer of

the "single process �pplic�tion": the server th�t runs on its

The Sweet Release of SQLite

https://memcached.org/
https://redis.io/
https://sidekiq.org/
https://www.pgbouncer.org/
https://www.sqlite.org/locrsf.html
https://www.sqlite.org/testing.html
https://www.sqlite.org/
https://crawshaw.io/blog/one-process-programming-notes

own, without relying on nine other sidec�r servers to

function.

I got interested in these kinds of �pplic�tions bec�use I build

d�t�b�ses. I wrote BoltDB, which is � popul�r embedded K/V

store in the Go ecosystem. BoltDB is reli�ble �nd, �s you'd

expect from �n in-process d�t�b�se, it performs like � nitro-

burning funny c�r. But BoltDB h�s limit�tions: its schem� is

defined in Go code, �nd so it's h�rd to migr�te d�t�b�ses.

You h�ve to build your own tooling for it; there isn't even �

REPL.

If you're c�reful, using this kind of d�t�b�se c�n get you �

lot of perform�nce. But for gener�l-purpose use, you don't

w�nt to run your d�t�b�se off the open he�ders like � funny

c�r. I thought �bout the kind of work I'd h�ve to do to m�ke

BoltDB vi�ble for more �pplic�tions, �nd the conclusion I

quickly re�ched w�s: th�t's wh�t SQLite is for.

SQLite, �s you �re no doubt �lre�dy typing into the mess�ge

bo�rd comment, is not without its own limit�tions. The

biggest of them is th�t � single-process �pplic�tion h�s �

single point of f�ilure: if you lose the server, you've lost the

d�t�b�se. Th�t's not � fl�w in SQLite; it's just inherent to the

design.

There �re two big re�sons everyone doesn't def�ult to

SQLite. The first is resilience to stor�ge f�ilures, �nd the

second is concurrency �t sc�le. Litestre�m h�s something to

s�y �bout both concerns.

How Litestre�m works is th�t it t�kes control of SQLite's

WAL-mode journ�ling. In WAL mode, write oper�tions �ppend

to � log file stored �longside SQLite's m�in d�t�b�se file.

Re�ders check both the WAL file �nd the m�in d�t�b�se to

s�tisfy queries. Norm�lly, SQLite �utom�tic�lly checkpoints

Enter Litestream

https://crawshaw.io/blog/one-process-programming-notes
https://github.com/boltdb/bolt
https://sqlite.org/wal.html

p�ges from the WAL b�ck to the m�in d�t�b�se. Litestre�m

steps in the middle of this: we open �n indefinite re�d

tr�ns�ction th�t prevents �utom�tic checkpoints. We then

c�pture WAL upd�tes ourselves, replic�te them, �nd trigger

the checkpointing ourselves.

The most import�nt thing you should underst�nd

�bout Litestre�m is th�t it's just SQLite. Your

�pplic�tion uses st�nd�rd SQLite, with wh�tever

your st�nd�rd SQLite libr�ries �re. We're not p�rsing

your queries or proxying your tr�ns�ctions, or even

�dding � new libr�ry dependency. We're just t�king

�dv�nt�ge of the journ�ling �nd concurrency

fe�tures SQLite �lre�dy h�s, in � tool th�t runs

�longside your �pplic�tion. For the most p�rt, your

code c�n be oblivious to Litestre�m's existence.

Or, think of it this w�y: you c�n build � Remix

�pplic�tion b�cked by Litestre�m-replic�ted SQLite,

�nd, while it's running, cr�ck open the d�t�b�se

using the st�nd�rd REPL �nd m�ke some

ch�nges. It'll just work.

You c�n re�d more �bout how this works here.

It sounds complic�ted, but it's incredibly simple in pr�ctice,

�nd if you pl�y with it you'll see th�t it "just works". You run

the Litestre�m bin�ry on the server your d�t�b�se lives on in

"replic�te" mode:

sqlite3

litestream replicate fruits.db s3://my-

bukkit:9000/fruits.db

$

https://sqlite.org/wal.html
https://litestream.io/how-it-works/
https://litestream.io/getting-started/

And then you c�n "restore" it to �nother loc�tion:

Now commit � ch�nge to your d�t�b�se; if you restore �g�in

then you'll see the ch�nge on your new copy.

Sidenote: We'll replic�te �lmost �nywhere: to S3, or Minio;
to Azure, or B�ckbl�ze B2, or Digit�l Oce�n or Google
Cloud, or �n SFTP server.

The ordin�ry w�y people use Litestre�m tod�y is to replic�te

their SQLite d�t�b�se to S3 (it's rem�rk�bly che�p for most

SQLite d�t�b�ses to live-replic�te to S3). Th�t, by itself, is �

huge oper�tion�l win: your d�t�b�se is �s resilient �s you

�sk it to be, �nd e�sily moved, migr�ted, or mucked with.

But you c�n do more th�n th�t with Litestre�m. The

upcoming rele�se of Litestre�m will let you live-replic�te

SQLite directly between d�t�b�ses, which me�ns you c�n

set up � write-le�der d�t�b�se with distributed re�d replic�s.

Re�d replic�s c�n c�tch writes �nd redirect them to the

le�der; most �pplic�tions �re re�d-he�vy, �nd this setup

gives those �pplic�tions � glob�lly sc�l�ble d�t�b�se.

litestream restore -o fruits-replica.db

s3://my-bukkit:9000/fruits.db

$

Litestream SQLite, Postgres,

CockroachDB, or any other

database

They �ll work on Fly.io; we do built-in persistent

stor�ge �nd priv�te networking for p�inless

https://fly.io/blog/globally-distributed-postgres/

One of my first jobs in tech in the e�rly 2000s w�s �s �n

Or�cle D�t�b�se Administr�tor (DBA) for �n Or�cle�i

d�t�b�se. I remember spending hours poring over books �nd

document�tion to le�rn the ins �nd outs of the Or�cle

d�t�b�se. And there were � lot. The �dministr�tion guide w�s

�lmost � thous�nd p�ges—�nd th�t w�s just one of over �

hundred document�tion guides.

Le�rning wh�t knobs to turn to optimize queries or to

improve writes could m�ke � big difference b�ck then. We

h�d disk drives th�t could only re�d tens of meg�bytes per

second so utilizing � better index could ch�nge � 5-minute

query into � 30 second query.

But d�t�b�se optimiz�tion h�s become less import�nt for

typic�l �pplic�tions. If you h�ve � 1 GB d�t�b�se, �n NVMe

disk c�n slurp the whole thing into memory in under �

second. As much �s I love tuning SQL queries, it's becoming

� dying �rt for most �pplic�tion developers. Even poorly

tuned queries c�n execute in under � second for ordin�ry

d�t�b�ses.

Modern Postgres is � mir�cle. I've le�rned � ton by re�ding its

code over the ye�rs. It includes � slew of fe�tures like �

genetic query optimizer, row-level security policies, �nd � h�lf

dozen different types of indexes. If you need those fe�tures,

you need them. But most of you prob�bly don't.

clustering, so it's e�sy to try new stuff out.

Try Fly →

You Should Take This Option More

Seriously

https://docs.oracle.com/cd/A91034_01/DOC/server.901/a90117.pdf
https://docs.oracle.com/cd/A91034_01/DOC/nav/docindex.htm
https://fly.io/docs/speedrun/

And if you don't need the Postgres fe�tures, they're �

li�bility. For ex�mple, even if you don't use multiple user

�ccounts, you'll still need to configure �nd debug host-b�sed

�uthentic�tion. You h�ve to firew�ll off your Postgres server.

And more fe�tures me�n more document�tion, which m�kes

it difficult to underst�nd the softw�re you're running. The

document�tion for Postgres 1� is ne�rly 3,000 p�ges.

SQLite h�s � subset of the Postgres fe�ture set. But th�t

subset is ��.�% of wh�t I typic�lly need. Gre�t SQL support,

windowing, CTEs, full-text se�rch, JSON. And when it l�cks

� fe�ture, the d�t� is �lre�dy next to my �pplic�tion. So

there's little overhe�d to pull it in �nd process it in my code.

Me�nwhile, the complic�ted problems I re�lly need to solve

�ren't re�lly �ddressed by core d�t�b�se functions. Inste�d, I

w�nt to optimize for just two things: l�tency & developer

experience.

So one re�son to t�ke SQLite seriously is th�t it's

oper�tion�lly much simpler. You spend your time writing

�pplic�tion code, not designing intric�te d�t�b�se tiers. But

then there's the other problem.

We're beginning to hit theoretic�l limits. In � v�cuum, light

tr�vels �bout 18� miles in 1 millisecond. Th�t's the dist�nce

from Phil�delphi� to New York City �nd b�ck. Add in l�yers

of network switches, firew�lls, �nd �pplic�tion protocols �nd

the l�tency incre�ses further.

The per-query l�tency overhe�d for � Postgres query within

� single AWS region c�n be up to � millisecond. Th�t's not

Postgres being slow—it's you hitting the limits of how f�st

d�t� c�n tr�vel. Now, h�ndle �n HTTP request in � modern

�pplic�tion. A dozen d�t�b�se queries �nd you've burned

over 10ms before business logic or rendering.

The Light Is Too Damn Slow

https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-US.pdf
https://www.sqlite.org/windowfunctions.html
https://www.sqlite.org/lang_with.html
https://www.sqlite.org/fts5.html
https://www.sqlite.org/json1.html

There's � m�gic number for �pplic�tion l�tency: responses

in 100ms or less feel inst�nt�neous. Sn�ppy �pplic�tions
m�ke h�ppy users. 100ms seems like � lot, but it's e�sy to

c�relessly chew it up. The 100ms threshold is so import�nt

th�t people pre-render their p�ges �nd post them on CDNs

just to reduce l�tency.

We'd r�ther just move our d�t� close to our �pplic�tion. How

much closer? Re�lly close.

SQLite isn't just on the s�me m�chine �s your �pplic�tion,

but �ctu�lly built into your �pplic�tion process. When you

put your d�t� right next to your �pplic�tion, you c�n see per-

query l�tency drop to 10-20 microseconds. Th�t's micro,

with � μ. A 50-100x improvement over �n intr�-region

Postgres query.

But w�it, there's more. We've effectively elimin�ted per-query

l�tency. Our �pplic�tion is f�st, but it's �lso simpler. We c�n

bre�k up l�rger queries into m�ny sm�ller, more m�n�ge�ble

queries, �nd spend the time we've been using to hunt down

corner-c�sey N+1 p�tterns building new fe�tures.

Minimizing l�tency isn't just for production either. Running

integr�tion tests with � tr�dition�l client/server d�t�b�se

e�sily grows to t�ke minutes loc�lly �nd the p�in continues

once you push to CI. Reducing the feedb�ck loop from code

ch�nge to test completion doesn't just s�ve time but �lso

preserves our focus while developing. A one-line ch�nge to

SQLite will let you run it in-memory so you c�n run

integr�tion tests in seconds or less.

Litestre�m is distributed �nd replic�ted �nd, most import�ntly,

still e�sy to get your he�d �round. Seriously, go try it. There's

just not much to know.

Small, Fast, Reliable, Globally

Distributed: Choose Any Four

https://jamstack.org/
https://litestream.io/getting-started/

My cl�im is this: by building reli�ble, e�sy-to-use replic�tion

for SQLite, we m�ke it �ttr�ctive for �ll kinds of full-st�ck

�pplic�tions to run entirely on SQLite. It w�s re�son�ble to

overlook this option 170 ye�rs �go, when the R�ils Blog

Tutori�l w�s first written. But SQLite tod�y c�n keep up with

the write lo�d of most �pplic�tions, �nd replic�s c�n sc�le

re�ds out to �s m�ny inst�nces �s you choose to lo�d-

b�l�nce �cross.

Litestre�m h�s limit�tions. I built it for single-node

�pplic�tions, so it won't work well on ephemer�l, serverless

pl�tforms or when using rolling deployments. It needs to

restore �ll ch�nges sequenti�lly which c�n m�ke d�t�b�se

restores t�ke minutes to complete. We're rolling out live

replic�tion, but the sep�r�te-process model restricts us to

course-gr�ined control over replic�tion gu�r�ntees.

We c�n do better. For the p�st ye�r, wh�t I've been doing is

n�iling down the core of Litestre�m �nd keeping � focus on

correctness. I'm h�ppy with where we've l�nded. It st�rted �s

� simple, stre�ming b�ck up tool but it's slowly evolving into

� reli�ble, distributed d�t�b�se. Now it's time to m�ke it

f�ster �nd more se�mless, which is my whole job �t Fly.io.

There �re improvements coming to Litestre�m —

improvements th�t �ren't �t �ll tied to Fly.io! — th�t I'm

psyched to sh�re.

Litestre�m h�s � new home �t Fly.io, but it is �nd �lw�ys will

be �n open-source project. My pl�n for the next sever�l

ye�rs is to keep m�king it more useful, no m�tter where your

�pplic�tion runs, �nd see just how f�r we c�n t�ke the

SQLite model of how d�t�b�ses c�n work.

LAST UPDATED • MAY �, 2022

Ben Johnson

@benbjohnson

https://guides.rubyonrails.org/getting_started.html
https://github.com/benbjohnson/litestream/issues/8
https://twitter.com/share?text=I%27m%20All-In%20on%20Server-Side%20SQLite&url=https://fly.io/blog/all-in-on-sqlite-litestream/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/all-in-on-sqlite-litestream/&t=I%27m%20All-In%20on%20Server-Side%20SQLite
http://www.reddit.com/submit?url=https://fly.io/blog/all-in-on-sqlite-litestream/&title=I%27m%20All-In%20on%20Server-Side%20SQLite
https://twitter.com/benbjohnson

COMPANY

About

Pricing

Jobs

ARTICLES

Blog

Phoenix Files
L�r�vel Bytes
Ruby Disp�tch

RESOURCES

Docs

Support

St�tus

CONTACT

GitHub

Twitter

Community

LEGAL

Security

Priv�cy policy
Terms of service

Copyright © 2023 Fly.io

Next post ↑

Logbook - 2022-05-13

Previous post ↓

Logbook - 2022-05-05

https://fly.io/
https://fly.io/about/
https://fly.io/docs/about/pricing/
https://fly.io/jobs/
https://fly.io/blog/
https://fly.io/phoenix-files/
https://fly.io/laravel-bytes/
https://fly.io/ruby-dispatch/
https://fly.io/docs/
https://fly.io/docs/support/
https://status.flyio.net/
https://github.com/superfly/
https://twitter.com/flydotio
https://community.fly.io/
https://fly.io/docs/security/
https://fly.io/legal/privacy-policy
https://fly.io/legal/terms-of-service
https://fly.io/blog/logbook-2022-05-13/
https://fly.io/blog/logbook-2022-05-05/

