
READING TIME • 14 MIN

I'm All-In on Server-Side SQLite

I'm Ben Johnson. I wrote BoltDB, an embedded
database that is the backend for systems like
etcd. Now I work at Fly.io, on Litestream.
Litestream is an open-source project that makes
SQLite tenable for full-stack applications
through the power of ✨replication✨. If you can
set up a SQLite database, you can get
Litestream working in less than 10 minutes.

The conventional wisdom of full-stack applications is the n-

tier architecture, which is now so common that it's easy to

forget it even has a name. It's what you're doing when you

run an "application server" like Rails, Django, or Remix

alongside a "database server" like Postgres. According to the

conventional wisdom, SQLite has a place in this architecture:

as a place to run unit tests.

Annie Ruygt

https://twitter.com/share?text=I%27m%20All-In%20on%20Server-Side%20SQLite&url=https://fly.io/blog/all-in-on-sqlite-litestream/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/all-in-on-sqlite-litestream/&t=I%27m%20All-In%20on%20Server-Side%20SQLite
http://www.reddit.com/submit?url=https://fly.io/blog/all-in-on-sqlite-litestream/&title=I%27m%20All-In%20on%20Server-Side%20SQLite
https://fly.io/
https://litestream.io/
https://fly.io/docs/speedrun/
https://annieruygtillustration.com/
https://fly.io/
https://fly.io/blog/

The conventional wisdom could use some updating. I think

that for many applications – production applications, with

large numbers of users and high availability requirements –

 SQLite has a better place, in the center of the stack, as the

core of your data and persistence layer.

It's a big claim. It may not hold for your application. But you

should consider it, and I'm here to tell you why.

50 years is not a long time. In that time, we've seen a

staggering amount of change in how our software manages

data.

In the beginning of our story, back in the '70s, there were

Codd's rules, defining what we now call "relational

databases", also known today as "databases". You know

them, even if you don't: all data lives in tables; tables have

columns, and rows are addressable with keys; C.R.U.D.;

schemas; a textual language to convey these concepts. The

language, of course, is SQL, which prompted a Cambrian

explosion of SQL databases, from Oracle to DB2 to

Postgres to MySQL, throughout the '80s and '90s.

It hasn't all been good. The 2000s got us XML databases.

But our industry atoned by building some great columnar

databases during the same time. By the 2010s, we saw

dozens of large-scale, open-source distributed database

projects come to market. Now anyone can spin up a cluster

and query terabytes of data.

As databases evolved, so too did the strategies we use to

plug them in to our applications. Almost since Codd, we've

divided those apps into tiers. First came the database tier.

Later, with memcached and Redis, we got the caching tier.

We've got background job tiers and we've got routing tiers

A Brief History of Application

Databases

https://www.oreilly.com/library/view/sql-in-a/9780596155322/ch01s01s01.html
https://en.wikipedia.org/wiki/Relational_database
https://www.vertica.com/secrets-behind-verticas-performance/
https://memcached.org/
https://redis.io/
https://sidekiq.org/
https://www.pgbouncer.org/

and distribution tiers. The tutorials pretend that there are 3

tiers, but we all know it's called "n-tier" because nobody can

predict how many tiers we're going to end up with.

You know where we're going with this. Our scientists were

so preoccupied with whether or not they could, and so on.

See, over these same five decades, we've also seen CPUs,

memory, & disks become hundreds of times faster and

cheaper. A term that practically defines database innovation

in the 2010s is "big data". But hardware improvements have

made that concept slippery in the 2020s. Managing a 1 GB

database in 1996? A big deal. In 2022? Run it on your laptop,

or a t3.micro.

When we think about new database architectures, we're

hypnotized by scaling limits. If it can't handle petabytes, or at

least terabytes, it's not in the conversation. But most

applications will never see a terabyte of data, even if they're

successful. We're using jackhammers to drive finish nails.

There's a database that bucks a lot of these trends. It's one

of the most popular SQL databases in the world, so

standardized it's an official archival format of the Library of

Congress, it's renowned for its reliability and its unfathomably

encompassing test suite, and its performance is so good

that citing its metrics on a message board invariably starts

an argument about whether it should be disqualified. I

probably don't have to name it for you, but, for the one

person in the back with their hand raised, I'm talking about

SQLite.

SQLite is an embedded database. It doesn't live in a

conventional architectural tier; it's just a library, linked into

your application server's process. It's the standard bearer of

the "single process application": the server that runs on its

The Sweet Release of SQLite

https://memcached.org/
https://redis.io/
https://sidekiq.org/
https://www.pgbouncer.org/
https://www.sqlite.org/locrsf.html
https://www.sqlite.org/testing.html
https://www.sqlite.org/
https://crawshaw.io/blog/one-process-programming-notes

own, without relying on nine other sidecar servers to

function.

I got interested in these kinds of applications because I build

databases. I wrote BoltDB, which is a popular embedded K/V

store in the Go ecosystem. BoltDB is reliable and, as you'd

expect from an in-process database, it performs like a nitro-

burning funny car. But BoltDB has limitations: its schema is

defined in Go code, and so it's hard to migrate databases.

You have to build your own tooling for it; there isn't even a

REPL.

If you're careful, using this kind of database can get you a

lot of performance. But for general-purpose use, you don't

want to run your database off the open headers like a funny

car. I thought about the kind of work I'd have to do to make

BoltDB viable for more applications, and the conclusion I

quickly reached was: that's what SQLite is for.

SQLite, as you are no doubt already typing into the message

board comment, is not without its own limitations. The

biggest of them is that a single-process application has a

single point of failure: if you lose the server, you've lost the

database. That's not a flaw in SQLite; it's just inherent to the

design.

There are two big reasons everyone doesn't default to

SQLite. The first is resilience to storage failures, and the

second is concurrency at scale. Litestream has something to

say about both concerns.

How Litestream works is that it takes control of SQLite's

WAL-mode journaling. In WAL mode, write operations append

to a log file stored alongside SQLite's main database file.

Readers check both the WAL file and the main database to

satisfy queries. Normally, SQLite automatically checkpoints

Enter Litestream

https://crawshaw.io/blog/one-process-programming-notes
https://github.com/boltdb/bolt
https://sqlite.org/wal.html

pages from the WAL back to the main database. Litestream

steps in the middle of this: we open an indefinite read

transaction that prevents automatic checkpoints. We then

capture WAL updates ourselves, replicate them, and trigger

the checkpointing ourselves.

The most important thing you should understand

about Litestream is that it's just SQLite. Your

application uses standard SQLite, with whatever

your standard SQLite libraries are. We're not parsing

your queries or proxying your transactions, or even

adding a new library dependency. We're just taking

advantage of the journaling and concurrency

features SQLite already has, in a tool that runs

alongside your application. For the most part, your

code can be oblivious to Litestream's existence.

Or, think of it this way: you can build a Remix

application backed by Litestream-replicated SQLite,

and, while it's running, crack open the database

using the standard REPL and make some

changes. It'll just work.

You can read more about how this works here.

It sounds complicated, but it's incredibly simple in practice,

and if you play with it you'll see that it "just works". You run

the Litestream binary on the server your database lives on in

"replicate" mode:

sqlite3

litestream replicate fruits.db s3://my-

bukkit:9000/fruits.db

$

https://sqlite.org/wal.html
https://litestream.io/how-it-works/
https://litestream.io/getting-started/

And then you can "restore" it to another location:

Now commit a change to your database; if you restore again

then you'll see the change on your new copy.

Sidenote: We'll replicate almost anywhere: to S3, or Minio;
to Azure, or Backblaze B2, or Digital Ocean or Google
Cloud, or an SFTP server.

The ordinary way people use Litestream today is to replicate

their SQLite database to S3 (it's remarkably cheap for most

SQLite databases to live-replicate to S3). That, by itself, is a

huge operational win: your database is as resilient as you

ask it to be, and easily moved, migrated, or mucked with.

But you can do more than that with Litestream. The

upcoming release of Litestream will let you live-replicate

SQLite directly between databases, which means you can

set up a write-leader database with distributed read replicas.

Read replicas can catch writes and redirect them to the

leader; most applications are read-heavy, and this setup

gives those applications a globally scalable database.

litestream restore -o fruits-replica.db

s3://my-bukkit:9000/fruits.db

$

Litestream SQLite, Postgres,

CockroachDB, or any other

database

They all work on Fly.io; we do built-in persistent

storage and private networking for painless

https://fly.io/blog/globally-distributed-postgres/

One of my first jobs in tech in the early 2000s was as an

Oracle Database Administrator (DBA) for an Oracle9i

database. I remember spending hours poring over books and

documentation to learn the ins and outs of the Oracle

database. And there were a lot. The administration guide was

almost a thousand pages—and that was just one of over a

hundred documentation guides.

Learning what knobs to turn to optimize queries or to

improve writes could make a big difference back then. We

had disk drives that could only read tens of megabytes per

second so utilizing a better index could change a 5-minute

query into a 30 second query.

But database optimization has become less important for

typical applications. If you have a 1 GB database, an NVMe

disk can slurp the whole thing into memory in under a

second. As much as I love tuning SQL queries, it's becoming

a dying art for most application developers. Even poorly

tuned queries can execute in under a second for ordinary

databases.

Modern Postgres is a miracle. I've learned a ton by reading its

code over the years. It includes a slew of features like a

genetic query optimizer, row-level security policies, and a half

dozen different types of indexes. If you need those features,

you need them. But most of you probably don't.

clustering, so it's easy to try new stuff out.

Try Fly →

You Should Take This Option More

Seriously

https://docs.oracle.com/cd/A91034_01/DOC/server.901/a90117.pdf
https://docs.oracle.com/cd/A91034_01/DOC/nav/docindex.htm
https://fly.io/docs/speedrun/

And if you don't need the Postgres features, they're a

liability. For example, even if you don't use multiple user

accounts, you'll still need to configure and debug host-based

authentication. You have to firewall off your Postgres server.

And more features mean more documentation, which makes

it difficult to understand the software you're running. The

documentation for Postgres 14 is nearly 3,000 pages.

SQLite has a subset of the Postgres feature set. But that

subset is 99.9% of what I typically need. Great SQL support,

windowing, CTEs, full-text search, JSON. And when it lacks

a feature, the data is already next to my application. So

there's little overhead to pull it in and process it in my code.

Meanwhile, the complicated problems I really need to solve

aren't really addressed by core database functions. Instead, I

want to optimize for just two things: latency & developer

experience.

So one reason to take SQLite seriously is that it's

operationally much simpler. You spend your time writing

application code, not designing intricate database tiers. But

then there's the other problem.

We're beginning to hit theoretical limits. In a vacuum, light

travels about 186 miles in 1 millisecond. That's the distance

from Philadelphia to New York City and back. Add in layers

of network switches, firewalls, and application protocols and

the latency increases further.

The per-query latency overhead for a Postgres query within

a single AWS region can be up to a millisecond. That's not

Postgres being slow—it's you hitting the limits of how fast

data can travel. Now, handle an HTTP request in a modern

application. A dozen database queries and you've burned

over 10ms before business logic or rendering.

The Light Is Too Damn Slow

https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-US.pdf
https://www.sqlite.org/windowfunctions.html
https://www.sqlite.org/lang_with.html
https://www.sqlite.org/fts5.html
https://www.sqlite.org/json1.html

There's a magic number for application latency: responses

in 100ms or less feel instantaneous. Snappy applications
make happy users. 100ms seems like a lot, but it's easy to

carelessly chew it up. The 100ms threshold is so important

that people pre-render their pages and post them on CDNs

just to reduce latency.

We'd rather just move our data close to our application. How

much closer? Really close.

SQLite isn't just on the same machine as your application,

but actually built into your application process. When you

put your data right next to your application, you can see per-

query latency drop to 10-20 microseconds. That's micro,

with a μ. A 50-100x improvement over an intra-region

Postgres query.

But wait, there's more. We've effectively eliminated per-query

latency. Our application is fast, but it's also simpler. We can

break up larger queries into many smaller, more manageable

queries, and spend the time we've been using to hunt down

corner-casey N+1 patterns building new features.

Minimizing latency isn't just for production either. Running

integration tests with a traditional client/server database

easily grows to take minutes locally and the pain continues

once you push to CI. Reducing the feedback loop from code

change to test completion doesn't just save time but also

preserves our focus while developing. A one-line change to

SQLite will let you run it in-memory so you can run

integration tests in seconds or less.

Litestream is distributed and replicated and, most importantly,

still easy to get your head around. Seriously, go try it. There's

just not much to know.

Small, Fast, Reliable, Globally

Distributed: Choose Any Four

https://jamstack.org/
https://litestream.io/getting-started/

My claim is this: by building reliable, easy-to-use replication

for SQLite, we make it attractive for all kinds of full-stack

applications to run entirely on SQLite. It was reasonable to

overlook this option 170 years ago, when the Rails Blog

Tutorial was first written. But SQLite today can keep up with

the write load of most applications, and replicas can scale

reads out to as many instances as you choose to load-

balance across.

Litestream has limitations. I built it for single-node

applications, so it won't work well on ephemeral, serverless

platforms or when using rolling deployments. It needs to

restore all changes sequentially which can make database

restores take minutes to complete. We're rolling out live

replication, but the separate-process model restricts us to

course-grained control over replication guarantees.

We can do better. For the past year, what I've been doing is

nailing down the core of Litestream and keeping a focus on

correctness. I'm happy with where we've landed. It started as

a simple, streaming back up tool but it's slowly evolving into

a reliable, distributed database. Now it's time to make it

faster and more seamless, which is my whole job at Fly.io.

There are improvements coming to Litestream —

improvements that aren't at all tied to Fly.io! — that I'm

psyched to share.

Litestream has a new home at Fly.io, but it is and always will

be an open-source project. My plan for the next several

years is to keep making it more useful, no matter where your

application runs, and see just how far we can take the

SQLite model of how databases can work.

LAST UPDATED • MAY 9, 2022

Ben Johnson

@benbjohnson

https://guides.rubyonrails.org/getting_started.html
https://github.com/benbjohnson/litestream/issues/8
https://twitter.com/share?text=I%27m%20All-In%20on%20Server-Side%20SQLite&url=https://fly.io/blog/all-in-on-sqlite-litestream/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/all-in-on-sqlite-litestream/&t=I%27m%20All-In%20on%20Server-Side%20SQLite
http://www.reddit.com/submit?url=https://fly.io/blog/all-in-on-sqlite-litestream/&title=I%27m%20All-In%20on%20Server-Side%20SQLite
https://twitter.com/benbjohnson

COMPANY

About

Pricing

Jobs

ARTICLES

Blog

Phoenix Files
Laravel Bytes
Ruby Dispatch

RESOURCES

Docs

Support

Status

CONTACT

GitHub

Twitter

Community

LEGAL

Security

Privacy policy
Terms of service

Copyright © 2023 Fly.io

Next post ↑

Logbook - 2022-05-13

Previous post ↓

Logbook - 2022-05-05

https://fly.io/
https://fly.io/about/
https://fly.io/docs/about/pricing/
https://fly.io/jobs/
https://fly.io/blog/
https://fly.io/phoenix-files/
https://fly.io/laravel-bytes/
https://fly.io/ruby-dispatch/
https://fly.io/docs/
https://fly.io/docs/support/
https://status.flyio.net/
https://github.com/superfly/
https://twitter.com/flydotio
https://community.fly.io/
https://fly.io/docs/security/
https://fly.io/legal/privacy-policy
https://fly.io/legal/terms-of-service
https://fly.io/blog/logbook-2022-05-13/
https://fly.io/blog/logbook-2022-05-05/

