
Case studies

World-class teams use Radix to power
their products

Documentation Case studies Resources

Unstyled, accessible components for building high‑quality
design systems and web apps in React.

Install Primitives

Dialog

With modal and non-modal modes, fine-grained

focus control, accessible to screen readers.

Dropdown Menu

With submenus, checkable items, collision handling,

arrow key navigation, and typeahead support.

Popover

With fine-grained focus control, collision han

origin-aware and collision-aware animations

Edit Profile

Edit Profile

Make changes to your profile here.

Click save when you’re done.

Name Pedro Duarte

Username @peduarte

Save

Options

New Tab

New Window

Favorites

Downloads

Show Toolbar

Show Full URLs

Dimensions

Dimensions

Width ����

Height ��vh

Margin �

Padding ���

“We’ve been able to focus on building solid user experiences on top of Radix Primitives. With UI components, there are just too many

angles and rabbit holes to cover for product teams that wish to move quickly.”

Rauno Freiberg, UI Engineer at Vercel

“Radix has significantly improved the accessibility standard in our components. We spend far less time discussing and implementing

keyboard navigation, focus traps, and researching appropriate ARIA techniques for our components.”

https://www.radix-ui.com/
https://www.radix-ui.com/docs/primitives
https://www.radix-ui.com/case-studies
https://www.radix-ui.com/docs/primitives/overview/getting-started
https://www.radix-ui.com/case-studies/vercel
https://www.radix-ui.com/case-studies/codesandbox

And dozens more companies

Scott Hutcheson, Product Engineer at CodeSandbox

Why Radix Primitives

Spend less time on
undifferentiated work

Save time. Ship faster.

It takes a lot of time to develop and maintain robust UI components, and it's

mostly undifferentiated work. Building on top of Radix components will

save you time and money, so you can ship a better product faster.

Focus on your product

It’s no secret that robust UI components are tricky to build. Nailing

accessibility details and complex logic sucks time away from product

feature development. With Radix, you can focus on your unique

engineering challenges instead.

5M+
Monthly downloads

3000 +
Discord members

5k +
GitHub stars

Full keyboard navigation Modal and non-modal modes

Case in point

So, you think you can build a dropdown?
We agonise over API design, performance, and accessibility so you

don't need to.

https://www.radix-ui.com/case-studies
https://www.radix-ui.com/case-studies/codesandbox
https://www.radix-ui.com/case-studies/atom-learning
https://www.radix-ui.com/case-studies/basedash
https://www.radix-ui.com/case-studies/basement-studio
https://www.radix-ui.com/case-studies/linear
https://www.radix-ui.com/case-studies/liveblocks
https://www.radix-ui.com/case-studies/supabase
https://www.radix-ui.com/case-studies/university-of-amsterdam

Navigate the menu using arrow keys, Escape, and Enter hotkeys, or

even via typeahead.

Configure whether the dropdown menu allows or blocks outside

interactions.

Supports submenus

Nest another level of fully functional submenus inside the dropdown

menu.

Supports assistive technology

Implements correct semantics and behaviors, so it's accessible to

people using assistive technology.

Collision and origin-aware animations

Create open and close animations that take the dropdown menu’s

actual position into account.

Control alignment and collisions

Position the menu anywhere relative to the trigger, taking collisions

with the screen into account.

Fully managed focus

Granularly control focus behavior when user closes the dropdown menu

or focuses an outside element.

Supports checkable items

Items can be used to perform actions, as well as act as checkbox or

radiobutton controls.

Supports assistive technology

Accessibility out of the box

Screen reader

Radix component

Navigation

Screen reader support

Typeahead support

Keyboard navigation

RTL support

Show Minimap

Go to Symbol

Go to Definition

Go to References

WAI-ARIA compliant

Radix Primitives follow the WAI-ARIA guidelines, implementing correct

semantics and behaviors for our components.

Keyboard navigation

Primitives provide full keyboard support for components where users

expect to use a keyboard or other input devices.

Developer experience to love

Develop with an open, thought‑out API

One of our main goals is to provide the best possible developer

experience. Radix Primitives provides a fully-typed API. All components

share a similar API, creating a consistent and predictable experience.

Unstyled

No need to override styles, no specificity wars.

Composable

Granular access to each component part.

Transition to Radix Primitives

Adoption made easy

Go to docs

Incremental adoption

Each component is its own independently versioned package, so new

components can be added alongside your existing code. No need to disrupt

feature work with a huge rewrite —you can start small and add more

components one by one.

Detailed docs and TypeScript support

Radix documentation contains real-world examples, extensive API

references, accessibility details, and full TypeScript support. All

components share a similar API, creating a consistent developer

experience. You will love working with Radix Primitives.

Focus management

Out of the box, Primitives provide sensible focus management defaults,

which can be further customized in your code.

Screen reader tested

We test Primitives with common assistive technologies, looking out for

practical issues that people may experience.

// Add styles with your preferred CSS technology

const TooltipContent = styled(Tooltip.Content, {

 backgroundColor: 'black',

 borderRadius: '3px',

 padding: '5px'

});

const PopoverContent = styled(Popover.Content, {

 backgroundColor: 'white',

 boxShadow: '0 2px 10px -3px rgb(0 0 0 / 20%)',

 borderRadius: '3px',

});

const DialogContent = styled(Dialog.Content, {

 backgroundColor: 'white',

 boxShadow: '0 3px 15px -4px rgb(0 0 0 / 30%)',

 borderRadius: '5px',

});

// Compose a custom Tooltip component

export const StatusTooltip = ({ state, label

 return (

 <Tooltip.Root>

 <Tooltip.Trigger asChild>

 <Text>

 <Status variant={state} />

 </Text>

 </Tooltip.Trigger>

 <Tooltip.Portal>

 <TooltipContent>

 <Tooltip.Arrow />

 {label}

 </TooltipContent>

 </Tooltip.Portal>

 </Tooltip.Root>

);

};

https://www.radix-ui.com/docs/primitives

An active and friendly community 👋

Join our fast-growing community

More from the Radix team

Complete suite of design system tools

A project by WorkOS.

Products

Primitives

Colors

Docs

Introduction

Styling

Community

GitHub

Twitter

Twitter

For announcements, blog posts, and general Radix tips.

Discord

To get involved in the community, ask questions, and share tips.

GitHub

To file issues, request features, and contribute, check out our GitHub.

Stitches

CSS-in-JS with near-zero runtime, SSR support, and a best-in-class DX.

Colors

Beautiful, thought-out palettes with auto dark mode.

Icons

A crisp set of ��×�� icons, balanced and consistent.

https://www.radix-ui.com/
https://workos.com/
https://www.radix-ui.com/
https://www.radix-ui.com/colors
https://www.radix-ui.com/docs/primitives/overview/introduction
https://www.radix-ui.com/docs/primitives/overview/styling
https://github.com/radix-ui
https://twitter.com/radix_ui
https://twitter.com/radix_ui
https://discord.com/invite/7Xb99uG
https://github.com/radix-ui
https://stitches.dev/
https://www.radix-ui.com/colors
https://icons.radix-ui.com/

Icons

Stitches

Accessibility

Releases

Discord

https://icons.radix-ui.com/
https://stitches.dev/
https://www.radix-ui.com/docs/primitives/overview/accessibility
https://www.radix-ui.com/docs/primitives/overview/releases
https://discord.com/invite/7Xb99uG

