
Community blogs Blog topics Liked blog posts Lichess blog

Photo by Mohamed Osama

Starting from scratch

thibault 372 6,791 views

Lichess Software Development

If you had to start Lichess from scratch, what would you change?

This question was asked after the legendary talk given by @arex at Big Techday 22. It was

suggested that I answer it in a tweet, but I don't think 280 chars will do.

 11 Aug 2022

lichess.org SIGN IN

https://lichess.org/blog/community
https://lichess.org/blog/topic
https://lichess.org/blog/liked
https://lichess.org/blog
https://lichess.org/@/thibault/blog
https://lichess.org/report?username=thibault&postUrl=https%3A%2F%2Flichess.org%2F%40%2Fthibault%2Fblog%2Fstarting-from-scratch%2FNITT84rC&reason=comm
https://lichess.org/blog/topic/Lichess
https://lichess.org/blog/topic/Software_Development
https://bit.ly/3pa7ORP
https://lichess.org/@/arex
https://lichess.org/
https://lichess.org/login?referrer=/@/thibault/blog/starting-from-scratch/NITT84rC

Here are the most defining technical aspects of Lichess:

Scala is the main programming language
MongoDB is the main database storing our data

Web frontend uses snabbdom and sass
Lichess looks like a monolith (lila) with a bunch of satellite services
All the code is open sourced as free software with the GPL license

These choices were made a while ago, at a time when Lichess was just a hobby project, and I didn't

intend for it to become the home of millions of chess players around the world.

So, how relevant are these choices today, and if we were to go back in time while keeping the

experience we accumulated, what would we do differently?

Scala as the main language

First, Lichess is not only made of scala. Since there are a bunch of different services communicating

through Redis or HTTP, we can choose the best language for each service - and it's usually either

https://www.scala-lang.org/
https://lichess.org/source
https://www.mongodb.com/
https://github.com/snabbdom/snabbdom
https://sass-lang.com/
https://github.com/lichess-org/lila
https://lichess.org/source
https://lichess.org/@/thibault/blog/how-i-started-building-lichess/JwtcE0KO

scala or rust - but it could be anything, really, depending on what the service does, and who works
on it.

But lila, the core of Lichess, is a scala program. And I still think it's the correct choice, and I would

still go for it. Lila is a big collection of relatively simple features in a cohesive package. For that, I
want a programming language that:

has strong static typing, so I can refactor to my heart content, without fear of breaking
everything. And without having to write and maintain a bazillion tests.

can do functional programming, so I can work with functions that compose

is expressive, so I can succinctly describe what things are intended to be, without boilerplate
and low level details

manages memory automatically, so I can focus more on the problems to solve, and less on

how the computer solves them
has a great ecosystem so I can focus on the chess aspects, and reuse as much open source

libraries as possible for everything else

Runtime performance is nice to have, but not of utmost importance for lila. Indeed, lila does A LOT

of things, and most of them are not performance-sensitive. Ease of programming and maintenance
is therefore more important than runtime performance.

For all these reasons I think scala is an excellent choice. There are only two other languages I would
seriously consider for a lila rewrite:

Haskell

It does type safety and functional programming better than scala, which is a big deal. Back in the

days, the JVM had a better ecosystem for building a chess web server, which is why Scala won. I
would reconsider Haskell very seriously now.

Rust

It's great at static typing, and what it lacks in functional programming features, it makes up with

other ways of making concurrent programming safe. It also runs ridiculously fast, but at the cost of
putting the burden of memory management onto the developer. Even if rust provides excellent

https://www.rust-lang.org/

compile-time tools to help with that, I just don't want to manage memory when building something
as big as lila, because it can only take more effort than just not having to deal with it whatsoever.

Oh, and lila is built on the Play Framework. It made sense originally to speed up development with a
cohesive and opinionated set of library that work together - a framework. But as years went and lila
got bigger, it outgrew the framework, and we would now be better off with smaller independent

libraries that we can swap as needed. So instead of a framework, I would now be looking at one
library for HTTP, another one for routing, another one for HTTP forms, JSON, and so on.

MongoDB as the main database

Another choice that was made 10 years ago. MongoDB is serving us well, and I'm happy with it.
It's currently juggling with 5.5 billion games and about 15 billion other documents, and serving tens
of thousands of queries per second. It's fast, compresses the data, and replicates seamlessly for

redundancy and data safety. Its aggregation framework allows the complex data queries Lichess
needs.

If we had to remake that choice, we would probably go for PostgreSQL, because it can also do all
that, and it's released under an open-source license.

TypeScript/Snabbdom and Sass on the frontend

These are pretty great, but to be honest I haven't looked at the alternatives for a while. For the
frontend I value speed and lightness, and snabbdom gives us that.

I would also go with TypeScript again, because it fixes JavaScript's main weakness, the absence of
static typing, without adding a runtime that would make Lichess heavier and slower.
Sass is annoying but that's just because CSS is annoying.

The lila monolith

https://www.playframework.com/
https://www.postgresql.org/about/licence/

The core of lichess is a single monolith program that's deployed on a single server. It's both
convenient and terrifying.

It's convenient because all the state is in one place, and can be cached in-heap for all modules of

the site to use. Which makes it very efficient and quick at runtime. Everything compiles as a single
unit, which ensures the entire site is coherent and free of incompatibilities.

It's terrifying because there's a big single point of failure. When lila goes down, everything goes
down. Also it requires restarting the entire thing to update just one module.

We have a bunch of distinct services to handle specific parts of the website, like websockets, the
opening explorer, the search engine, and more. While it's nice to be able to deploy them separately,

without bringing the entire website down, the benefit is mitigated by the necessary networking
between services. The network is, by definition, slow and unreliable, and each new service adds
complexity and performance compromises, when compared to a simple, cohesive and in-memory

monolith.

The current state of things is the result of years of evolution. There was no master plan, we just

looked at monitoring to figure out what needed scaling. I like where it's at, but to be honest I'm
biased by the fact it's the only large codebase I've been working on for years, so I lack experience

with different ways of doing things, that I could compare it to.

Maybe being able to deploy lila over multiple servers, for resilience, would be nice? But then we'd

lose the ability to cache things in-heap, because proper cache invalidation across several instances
would be impossible. The performance and complexity implications have deterred me from trying it
out so far.

Open source all the things

The one best decision we've ever made, and I wouldn't have it any other way. Not only do we get
contributions from the chess community, we also empower it to build new products with the help

of our source code and open database.

https://lichess.org/source
https://lichess.org/source
https://database.lichess.org/

DISCUSS THIS BLOG POST IN THE FORUM

More blog posts by thibault

Lichess & Scala 3

Lichess gets a big upgrade. It doesn't go as planned.

12 Dec 202212 Dec 2022

Lichess on scala3 - help needed

A week after deploying Lichess rewritten with scala 3, I
had to revert to the scala 2 version. I nee…

5 Dec 20225 Dec 2022

How to create a Lichess bot

Well, it depends. On you.

29 Oct 202129 Oct 2021

How to ask technical questions

Simple guidelines to get quick and actionable answers

1 Oct 20211 Oct 2021

https://lichess.org/ublog/NITT84rC/discuss
https://lichess.org/@/thibault/blog
https://lichess.org/@/thibault/blog/lichess--scala-3/y1sbYzJX
https://lichess.org/@/thibault/blog/lichess-on-scala3-help-needed/2bpotLb0
https://lichess.org/@/thibault/blog/how-to-create-a-lichess-bot/FuKyvDuB
https://lichess.org/@/thibault/blog/how-to-ask-technical-questions/1HSthDSX

