
Home Blog Links Mastodon

My favourite 3 lines of CSS
February 6, 2023 2:18 pm

In Every Layout, we wrote about The Stack. It’s a marriage of

Heydon’s Lobotomised Owl selector and my method of managing Flow

and Rhythm with CSS Custom Properties.

Let’s break the selector down: every direct sibling child element

of .stack has margin-block-start added to it. This is achieved

by the Lobotomised Owl selector, but the > combinator is added

to prevent margin being added recursively. In writing modes that

are left-to-right or right-to-left—such as English or Arabic—the

margin is added to the top of the element.

I’ve been obsessed with this particular snippet for years now,

and in recent years, I’ve enhanced it further with the flow

utility:

.stack > * + * {

 margin-block-start: 1.5rem;

}

.flow > * + * {

 margin-block-start: var(--flow-space, 1em);

}

https://andy-bell.co.uk/
https://andy-bell.co.uk/
https://andy-bell.co.uk/blog
https://andy-bell.co.uk/links
https://bell.bz/@andy
https://every-layout.dev/layouts/stack/
https://alistapart.com/article/axiomatic-css-and-lobotomized-owls/
https://24ways.org/2018/managing-flow-and-rhythm-with-css-custom-properties/
https://alistapart.com/article/axiomatic-css-and-lobotomized-owls/

As you can see, this is very similar to The Stack. The only

difference aside from the name, is the use of Custom Properties—

specifically the fallback value.

How fallback values work in CSS Custom
Properties

If you try to grab a CSS Custom Property value that hasn’t been

defined, the initial or inherited value will be used instead, but

if the Custom Property is invalid and you don’t provide a

fallback, it’ll fail.

In the context of the .flow utility, this would be pretty bad,

because if you’ve removed element’s default margin, like I do in

a reset, you could end up with no space at all.

The fallback value for .flow gives us two benefits:

1. There’s a sensible fallback for if --flow-space is accidentally

set as an invalid value

2. If --flow-space doesn’t exist, the margin-top-value will be 1em,

which will be relative to the element’s computed font size

https://every-layout.dev/layouts/stack/
https://andy-bell.co.uk/getting-started-with-css-custom-properties/
https://andy-bell.co.uk/getting-started-with-css-custom-properties/
https://matthiasott.com/notes/css-custom-properties-fail-without-fallback
https://andy-bell.co.uk/a-modern-css-reset/

Why do I use flow over The Stack?

I get asked this a lot and it’s a valid question. The reason is

twofold.

Firstly, I use this utility everywhere on projects. At our

studio, it is in every project we do, and probably will be

forever. The reason is that because we use fluid type and fluid

space, the .flow utility’s flexible, fallback-based setup works

in harmony with our methodology of letting the browser do all the

hard work for us.

Secondly, in contexts like prose content (often long-form content

like this article), we like to manage how certain HTML elements

space themselves. For example, we might want to reduce the space

of elements that directly follow headings and increase the space

around figure elements.

The space is 1em by default, so if the font size is larger, there will be more space. This is a handy

way of maintaining flow and rhythm if you’re using a type scale.

https://set.studio/
https://utopia.fyi/
https://www.youtube.com/watch?v=5uhIiI9Ld5M

This snippet is from this site you’re looking at now:

What the snippet does is:

1. Look for elements that directly follow a h2, h3 or h4.

2. Assign --flow-space with the small item from the spacing scale

As for .prose itself, I’ve set the following:

By default, I tend to leave --flow-space as undefined, but in

.prose contexts, I like a nice chunky bit of space between

elements, so because Custom Properties are affected by

specificity and the cascade, I create that more specific value.

.prose :is(h2 + *, h3 + *, h4 + *) {

 --flow-space: var(--space-s);

}

.prose {

 --flow-space: var(--space-m-l);

}

https://utopia.fyi/space/calculator?c=320,18,1.2,1240,20,1.25,5,2,&s=0.75%7C0.5%7C0.25,1.5%7C2%7C3%7C4%7C6,s-l&g=s,l,xl,12
https://css-tricks.com/a-complete-guide-to-custom-properties/#h-using-the-cascade

Why use margin and not gap?

Again, I get asked this a lot. I remember when Safari finally

pulled their finger out with gap, I sent Heydon a message saying

we should make everything on Every Layout gap, which we were

rather excited about. While we were putting actual thought into

the second edition—which introduced gap to the layouts—we

quickly realised we didn’t want to change The Stack.

This was partly down to the fact that in order to use gap, we

would have to make The Stack, either a flex or grid parent. This

could cause all sorts of problems for people that grabbed the

layout and dropped it in existing projects. This makes up a very

large portion of the people who use Every Layout in the real

world.

With the spacing value used for --flow-space—which computes to around 2.5rem—we get consistent space

between every element.

https://every-layout.dev/
https://every-layout.dev/layouts/stack/

Along with that, all of the control is put on the parent and not

the elements themselves. Back in the context of .flow and --

flow-space with a fallback value: this wouldn’t be possible with

gap. This is because gap is set on the parent (.flow) and

controls the space between child elements. The parent is in

complete control and the child elements have no say in what gap

is at any given moment.

Lastly, along with the flexibility of letting --flow-space be

affected by the cascade, and if it’s not set, letting .flow

inherit spacing values from the child element it affects. The

other key reason I don’t like to use gap is Logical Properties.

I personally want everything we build at the studio to use

Logical Properties as much as possible, because you get much

better multi-language and reading mode support out of the box.

They’re really well supported now, too!

Wrapping up

I honestly should have retired after making this iteration of

.flow:

Especially now that we use that and the rest of the layouts from

Every Layout at Set Studio. We’re essentially just colouring in

front-ends at this point—apart from the odd occasion when we

create a complex specific layout, where we use CSS grid layout to

its full potential.

.flow > * + * {

 margin-block-start: var(--flow-space, 1em);

}

https://web.dev/learn/css/spacing/#grid-and-flexbox
https://andy-bell.co.uk/css-logical-properties/
https://set.studio/
https://every-layout.dev/
https://set.studio/

The main reason I’ve written this post though, is to send people

to it when they ask why I use .flow or use margin, but also, I

hope you’ve seen how damn powerful CSS Custom Properties are.

They’re certainly more than just CSS variables, that’s for sure.

Liked by Yann Brelière ⁧��, / Factorial.io
@factorial_io@social.factorial.io, Roland Franke and 164 others

👋 Hello, I’m Andy and I’ll help you build fast & visually

stunning websites.

I’m the founder of Set Studio, a creative agency that specialises

in building stunning websites that work for everyone. If you’ve

got a project in mind, get in touch.

Back to blog

+

© 2023 Andy Bell.
Don’t forget to update your copyright date on New Year’s Day.

RSS Feed My Setup Set Studio

https://set.studio/?utm_campaign=Personal+Site+Call+To+Action&utm_source=Andy%E2%80%99s+Site&utm_medium=cta&utm_content=my-favourite-3-lines-of-css
mailto:andy@set.studio
https://andy-bell.co.uk/blog
https://andy-bell.co.uk/feed.xml
https://andy-bell.co.uk/uses
https://set.studio/

