
Back

Blog post

Type Constraints in 65
lines of SQL
2023-02-17 • 10 minute read

Oliver Rice
Engineering

PostgreSQL has a rich and extensible type system.

Beyond and types, we can:enums composite

apply data validation rules

override comparison operators like = / + / -

https://supabase.com/blog
https://github.com/olirice
https://www.postgresql.org/docs/current/datatype-enum.html
https://www.postgresql.org/docs/current/rowtypes.html
https://supabase.com/

With a little effort, a user-defined type can feel

indistinguishable from a built-in. In this article we focus

on validation and ergonomics while quickly touching on

a few other concepts.

To illustrate, we’ll create an semver data type to

represent values. We’ll then add

validation rules to make invalid states unrepresentable.

SemVer

A (very) loose primer on SemVer:

SemVer is a specification for representing software

versions that communicate information about

backwards compatibility. The type is typically

represented as a string with 5 components.

Where pre-release and metadata are optional.

create custom aggregations

define casting rules between types

Semantic Versioning

https://semver.org/

The intent of each component is outside the scope of

this article but, as an example, incrementing the major

version number notifies users that the release includes

at least one backwards incompatible change.

For a concise representation of the full spec,

.

SQL

For our purposes, we’ll assume that the SemVer type is a

critical component of the application that needs to be

queried flexibly and efficiently.

Storing Components

To that end, we’ll store each component of the version

as a separate field on a .

We can create an instance of this type in SQL by

casting a tuple as the semver_components type.

Unfortunately, our definition is far too permissive.

check out

the grammar

composite type

create type semver_components as (

 major int,

 minor int,

 patch int,

 pre_release text[],

 build_metadata text[]

);

select

 (1, 2, 3, array['beta', '1'], array['meta']

-- returns: (1,2,3,{'beta','1'},{'meta'})

select

 (null, -500, null, array['?'], array[''])::

https://semver.org/#backusnaur-form-grammar-for-valid-semver-versions
https://www.postgresql.org/docs/current/rowtypes.html

Our data type has no problem accepting invalid

components. To list a few of the SemVer rules we

violated:

We need to add some validation rules to meet our

“make invalid states unrepresentable” goal.

Validation

 are Postgres’ solution for optionally layering

constraints over a data type. Domains are to types

what are to tables. If you’re not

familiar with check constraints, you can think of them

as equivalent to zod/pydantic in javascript/python.

Let's codify some SemVer rules, layer them on the sem

ver_components type, and give the new domain a

friendly name.

-- returns: (,-500,,{'?'},{''

Major version must not be null

Minor version must be ≥ 0

Patch version must not be null

Pre-release elements must only include characters

[A-z0-9]

Build metadata elements may not be empty strings

Domains

check constraints

create domain semver

 as semver_components

 check (

 -- major: non-null positive integer

 (value).major is not null and (value).m

 -- minor: non-null positive integer

 and (value).minor is not null and (valu

 -- patch: non-null positive integer

 and (value).patch is not null and (valu

 and semver_elements_match_regex(

 (value).pre_release,

 '^[A-z0-9]{1,255}$'

https://www.postgresql.org/docs/current/sql-createdomain.html
https://www.postgresql.org/docs/current/ddl-constraints.html

which references a helper function:

Now, if we repeat our positive and negative test cases

using the semver type (vs semver_components) we

still accept valid states:

while invalid states are rejected with an error:

)

 and semver_elements_match_regex(

 (value).build_metadata,

 '^[A-z0-9\.]{1,255}$'

)

);

create or replace function semver_elements_matc

 parts text[],

 regex text

)

returns bool

language sql

as $$

 -- validates that *parts* nullable array of

 -- where each element of *parts* matches *r

 select

 $1 is null

 or (

 (

 select (

 bool_and(pr_arr.elem is not

 and bool_and(pr_arr.elem ~

)

 from

 unnest($1) pr_arr(elem)

)

 and array_length($1, 1) > 0

)

$$;

-- Success Case

select

 (1, 2, 3, array['beta', '1'], array['meta']

-- returns: (1,2,3,{'beta','1'},{'meta'})

Testing

Our validation doesn’t have to be called manually. The

semver domain can be used anywhere you’d use the s

emver_components type and the validations are

automatically applied.

Good stuff!

We’re 48 lines of SQL in and have solved for making

invalid states unrepresentable. Now lets think about

ergonomics.

Displaying

Now that our data type is well constrained, you might

notice that selecting values from a semver typed

-- Failure Case

select

 (null, -500, null, array['?'], array[''])::

-- ERROR: value for domain semver violates che

-- SQL state: 23514

-- A table with a semver column

create table package_version(

 id bigserial primary key,

 package_name text not null,

 package_semver semver not null -- semver co

);

-- Insert some valid records

insert into package_version(package_name, pack

values

 ('supabase-js', (2, 2, 3, null, null)),

 ('supabase-js', (2, 0, 0, array['rc', '1'],

);

-- Attempt to insert an invalid record (major i

insert into package_version(package_name, pack

values

 ('invalid-js', (null, 1, 0, array['asdf'],

-- ERROR: value for domain semver violates che

column returns a tuple, rather than the SemVer string

we’re used to seeing.

For example: (2,0,0,"{rc,1}",) vs 2.0.0-rc.1

We could work around that problem with some

, but I’d recommend keeping everything explicit

with a function call.

Which allows us to query the package_version table

and retrieve a string representation of the data.

select

 *

from

 package_version

/*

id | package_name | package_semver

 1 | supabase-js | (2,2,3,,)

 2 | supabase-js | (2,0,0,"{rc,1}",)

*/

custom

casts

create or replace function semver_to_text(semve

 returns text

 immutable

 language sql

as $$

 select

 format('%s.%s.%s', $1.major, $1.minor,

 || case

 when $1.pre_release is null then ''

 else format('-%s', array_to_string(

 end

 || case

 when $1.build_metadata is null then

 else format('+%s', array_to_string(

 end

$$;

select

 id,

 package_name,

 semver_to_text(package_semver) as ver -- ca

https://www.postgresql.org/docs/current/sql-createcast.html

Or, better yet, use a

so the text representation is persisted along with the s

emver type and incurs no query/filter penalty.

Other Tricks

Postgres provides all the tools you could want to make

your data types/domains work with SQL as seamlessly

as builtins.

For example, you could:

to name a few.

from

 package_version

/*

id | package_name | ver

 1 | supabase-js | 2.2.3

 2 | supabase-js | 2.0.0-rc.1

*/

generated column

create table package_version(

 id bigserial primary key,

 package_name text not null,

 package_semver semver not null,

 semver_text text generated always as (semver_

);

add convenience functions to parse a semver type

from text

 (=) to correctly

reflect that versions differing only in build metadata

are considered equal

override the equality operator

 to efficiently query for the

newest version of each package from within the

database

add a max function

https://www.postgresql.org/docs/current/ddl-generated-columns.html
https://github.com/supabase/dbdev/blob/ca338584203d9b2eb7a4a378f5724674c15b9c25/supabase/migrations/20220117141507_semver.sql#L78
https://github.com/supabase/dbdev/blob/ca338584203d9b2eb7a4a378f5724674c15b9c25/supabase/migrations/20220117141507_semver.sql#L37-L63
https://github.com/supabase/dbdev/blob/ca338584203d9b2eb7a4a378f5724674c15b9c25/supabase/migrations/20220117141507_semver.sql#L122-L140

Aligning the right parts of your business’ logic with the

database can dramatically improve throughput,

decrease IO, and simplify application code.

Conclusion

Admittedly, building performant and ergonomic

custom data types in Postgres involves a lot of

ceremony.

That said, in cases where:

Teaching Postgres to have first class support for your

custom type can be transformative for data integrity

and performance.

Share this article

Next post

How to build a real-time multiplayer game

with Flutter Flame
14 February 2023

Related articles

the type’s data integrity is critical

the type is well specified

the type’s spec does not change (or changes

infrequently)

https://twitter.com/share?text=Type%20Constraints%20in%2065%20lines%20of%20SQL&url=https://supabase.com/blog/type-constraints-in-65-lines-of-sql
https://www.linkedin.com/shareArticle?url=https://supabase.com/blog/type-constraints-in-65-lines-of-sql&title=Type%20Constraints%20in%2065%20lines%20of%20SQL

Type Constraints in 65 lines of SQL

How to build a real-time multiplayer game with Flutter Flame

Supabase Beta January 2023

Supabase Clippy: ChatGPT for Supabase Docs

Storing OpenAI embeddings in Postgres with pgvector

View all posts

Build in a weekend, scale to millions

Start your project

Product

Database

Auth

Functions

Realtime

Storage

Pricing

Resources

Support

System Status

Integrations

Experts

Brand Assets / Logos

DPA

https://supabase.com/blog
https://app.supabase.com/
https://supabase.com/
https://twitter.com/supabase
https://github.com/supabase
https://discord.supabase.com/
https://youtube.com/c/supabase
https://supabase.com/database
https://supabase.com/auth
https://supabase.com/edge-functions
https://supabase.com/realtime
https://supabase.com/storage
https://supabase.com/pricing
https://supabase.com/support
https://status.supabase.com/
https://supabase.com/partners/integrations
https://supabase.com/partners/experts
https://supabase.com/brand-assets
https://supabase.com/legal/dpa

Launch Week 6 SOC2

Developers

Documentation

Changelog

Contributing

Open Source

SupaSquad

DevTo

RSS

Company

Blog

Careers

Company

Terms of Service

Privacy Policy

Acceptable Use Policy

Service Level Agreement

Humans.txt

Lawyers.txt

Security.txt

© Supabase Inc

https://supabase.com/launch-week
https://forms.supabase.com/soc2
https://supabase.com/docs
https://supabase.com/changelog
https://supabase.com/docs/handbook/contributing
https://supabase.com/oss
https://supabase.com/supasquad
https://dev.to/supabase
https://supabase.com/rss.xml
https://supabase.com/blog
https://supabase.com/careers
https://supabase.com/company
https://supabase.com/terms
https://supabase.com/privacy
https://supabase.com/aup
https://supabase.com/sla
https://supabase.com/humans.txt
https://supabase.com/lawyers.txt
https://supabase.com/.well-known/security.txt

