
Reasonable Deviations
a rational approach to complexity

Home
Post archive

Projects
Revision notes
Book reviews

About
Subscribe

© Robert Andrew Martin 2023. All rights reserved. Disclaimer.

Man and machine: GPT for second
brains
05 Feb 2023 · 10 min read   [productivity]

In this post, I discuss how I used GPT embeddings to build a smart search tool for my second
brain note-taking system.

0:00

https://reasonabledeviations.com/
https://reasonabledeviations.com/
https://reasonabledeviations.com/Archive/
https://reasonabledeviations.com/Projects/
https://reasonabledeviations.com/Notes/
https://robertreads.notion.site/
https://reasonabledeviations.com/about/
https://github.com/robertmartin8
https://www.linkedin.com/in/robert-a-martin/
https://twitter.com/robertmartin88
https://reasonabledeviations.com/Disclaimer
https://reasonabledeviations.com/category/productivity

Try this if the video isn't working for you

Introduction
I spend a lot of time thinking about how to improve my processes for learning and
knowledge management; I’ve written extensively about my second-brain note-taking system,
Molecular Notes.

I use Molecular Notes on a daily basis but am still constantly on the lookout for
improvements. As my collection of notes grows, I have recently been running into a retrieval
issue: sometimes I’m trying to find an idea I know I’ve written about but I can’t remember the
name of the concept or where I came across it.

For example, let’s say I remember making some notes on failure modes in large
organisations, but I can’t remember any specific names or the source. I can try searching for
relevant keywords in Obsidian search, but this doesn’t help much. The problem is that
Obsidian’s default search is lexical – it tries to match words in the search query with words in
the documents. It would be generous to call this “hit or miss”: as you can see below, when I
search for “failure mode”, it matches anything with the string “mode”, including words like
“model” which are not relevant. I could do a literal search using double quotes, but that only
returns exact matches.

(Molecular Notes, through its emphasis on linked notes, provides other means of finding
content; in this case I could look at the local graph of notes connected to a relevant topic, like
Management, and hopefully find what I’m looking for that way).

I was in dire need of semantic search, where the search tool understands the content of my
second brain enough to return notes that are similar in meaning rather than just having the
same words.

https://twitter.com/robertmartin88/status/1622036336558358528?s=20
https://reasonabledeviations.com/2022/04/18/molecular-notes-part-1/
https://reasonabledeviations.com/2022/06/12/molecular-notes-part-2/

Basics of GPT
I don’t claim to have a good understanding of the internals of large language models. So here
is my “black box” understanding of GPT, which emphasises the inputs and outputs rather
than the internal function.

GPT (which stands for “Generative Pre-trained Transformer”) is a Large Language Model
(LLM) – a fancy deep learning model suited to a variety of language tasks. GPT-3 is the third
iteration of GPT, with 10x the number of parameters of v2, and presumably some multiplier
of the linguistic power.

The main task of GPT-3 is text completion – feed it some input text and it tries to return the
most appropriate output text. This is why we’ve seen amusing screenshots of GPT saying
things that are completely wrong – it has no inbuilt truth-seeking, it’s only trying to make
stuff sound right (in fairness, I don’t think humans are very different on this point).

Here is an overview of the different tools OpenAI has built on top of GPT-3:

ChatGPT: a variant of GPT-3 optimised for dialogue. It abstracts away the text
completion aspect by making it feel like GPT is answering your questions, and wraps it
in a nice UI.
Text completions API: feed in text programmatically and get back a completion. For
example, check out this demo where the completions API is used to fill in a spreadsheet
based on the surrounding cells. You could use the text completions API to build your
own version of ChatGPT.
DALL-E: an image generator based on GPT-3, which spits out images instead of text
completions in response to some text prompt
Embeddings API: this is what I used in the project. It is less intuitive than the others, so
I’ll explain more below.

https://gpt3demo.com/apps/google-sheets

Embeddings
The core idea of embeddings is to represent a block of text as a point in space (specifically, a
vector in high dimensional space).

We mostly want to do this because once text has some spatial location, we can derive useful
information based on its location. For example, we might be able to see that “dog” and “cat”
are spatially closer than “dog” and “trumpet”.

Also, vectors are easier to mathematically manipulate than blocks of text: adding and
subtracting vectors is just a matter of following arrows. So once we’ve represented words as
vectors, we can more rigorously say things like:

king = queen + man
tiger = cat + stripes
slower - slow + fast = faster

Samy Zafrany’s word2vec tutorial.

None of this is particularly new – word2vec was published in 2013. But the hope is that with
LLMs like GPT-3, the embeddings can become even more expressive, encoding paragraphs
or documents rather than just words and identifying abstract relationships between text
blocks.

GPT Embeddings for semantic search
The core workflow for semantic search is very straightforward – it’s basically the “hello
world” of GPT projects.

1. Take a bunch of text blocks and feed them to the OpenAI embeddings API. This returns
a 1536-dimensional vector for each text block.

2. Likewise, embed the search query using the same API to get a query vector.
3. Find the most similar vectors among my notes. There are several options to compute

the similarity between vectors, but most people default to cosine distance, which
measures how closely two vectors align.

4. Return the top n notes by similarity.

Here’s ChatGPT’s explanation, which is a bit more detailed.

The main nuance is deciding what constitutes a text block. There were two main
considerations here:

The OpenAI embeddings API limits the token size to 8191 (~6000 words). So each text
block has to be smaller than that.
What output do I want to be returned? It’s not super useful if the search points me to a
large note as I’d still have to scroll through that to find what I’m after.

Fortunately, my long notes are written in a fairly structured way, separated by headings. So I
just fed in each section as a text block.

Technical implementation
The code is on GitHub, though the implementation is tied quite closely to my particular
system and I don’t intend to put in any effort to generalise it.

Processing input
Because Obsidian notes are flat files, it’s simple to write a python script to walk through the
Obsidian vault to get all the notes into python. I asked ChatGPT to do it for me:

https://github.com/robertmartin8/MolecularNotes/blob/master/_scripts/gpt_search.py

The result of this step is a dictionary representation of my entire Obsidian vault, mapping
the note name and chapter to the note text.

notes = {('Some Podcast', 'Episode 1'): 'text',
 ('Some Podcast', 'Episode 2'): 'other text',

 ('Some book', 'Chapter 1'): 'my notes'}

For optimal embedding performance, I cleaned some of the text:

Removed some of the metadata I use in each note (e.g. author tags, metadata).
Remove newlines and special characters
Remove URLs and just keep the name of the link
Removed Obsidian backlinks (double square brackets).

I left mathematical notation untouched, because ideally I want the search engine to
understand maths. It seems to have some understanding – when I query “expectation of a
function versus the function of an expectation”, it does suggest Jensen’s inequality, even
though my note on Jensen’s inequality doesn’t mention the word “expectation” except in
mathematical terms. But I can’t be sure, perhaps it’s just picking up on the word “function”.

Embeddings
This is the easiest part of the project: OpenAI does the heavy lifting. The embedding function
(which I took from one of their cookbooks) takes in a text block and outputs a vector.

def get_embedding(block: str) -> list[float]:
 return openai.Embedding.create(

 input=block, model="text-embeding-ada-002"
)["data"][0]["embedding"]

I simply iterate through the dictionary of notes, applying the get_embedding function and
storing the vectors in a pandas dataframe – this is almost certainly not the best structure but
I’m familiar with them and the data is small enough where performance isn’t an issue.

def embed(notes: dict[(str, str), str]) -> pd.DataFrame:

 # Embeds the notes into openAI and returns a dataframe containing
the vectors.

 res = {}
 showfunc = lambda n: f"{n[0][0]} {n[0][1]}" if n else ""
 with click.progressbar(notes.items(), item_show_func=showfunc) as

note_items:
 for (note, section), text in note_items:

 block = section + ". " + text
 n = num_tokens_from_string(block)
 # Truncate if too long

 if n > EMBEDDING_CTX_LENGTH:
 warnings.warn(f"{note} {section} exceeded token limit.
Truncating.")

 block = truncate_text_tokens(block)
 try:

 embedding = get_embedding(block)
 except Exception as e:

https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb

 print(f"Error for {note} {section}", e)
 continue

 res[(note, section)] = embedding
 time.sleep(0.1)

 df = pd.DataFrame(res)
 return df

I wrote a utility function to compute the cost of embedding a list of notes and requesting user
confirmation before executing. Training on 1000+ notes only cost 7 cents!

I then used the same get_embedding function to process the query string, before
computing the cosine distance against the note embeddings in the dataframe:

qvec = get_embedding(query_string)
cos_sim = np.apply_along_axis(lambda x: cosine_similarity(x, qvec), ax
is=0, arr=df)

results = pd.Series(cos_sim, index=df.columns).sort_values(ascending=F
alse)

Finally, I sorted the resulting notes by similarity and returned them.

User interface
I built a CLI (command-line interface) using python’s click library. This allows for easy
creation of user confirmation prompts, progress bars, and styling.

Best of all, with click.launch(link) one can actually launch Obsidian, though it took
some effort to get the link in the right format.

Firstly, I installed the Advanced URI extension in Obsidian, which allows you to link to text
blocks within notes rather than just the note itself (a URI is like a URL but can link to things
other than web pages). I then reverse-engineered the format of the URI string, allowing me to

https://click.palletsprojects.com/en/8.1.x/

convert my (note_title, chapter_title) pairs (which also keys the dataframe of
embeddings vectors) into a proper URI. In the CLI, when I enter the note index, the URI is
built and passed to click.launch which opens Obsidian.

Next steps
There are several other ways I think GPT-3 can be used to augment my second brain
experience. Here are some ideas, in descending order of importance.

Link recommendation
I currently have an Obsidian extension that uses various distance metrics to list similar notes.
This is based on the graph structure and backlinks: e.g. if note A links to note C, and note B
links to note C, maybe A and B are similar.

But perhaps the GPT embeddings can capture more nuance in meaning. I plan to write a
small script to sort all unlinked notes by GPT-similarity (for linked notes, I have already
manually identified that there is a similarity so these should be excluded). I’m curious to see if
there are any abstract relations I have missed: for example, maybe there is some idea from a
particular event in Roman History that is a nice anecdote for a financial blowup in the 21st
century.

Summarisation
There are many projects out there using GPT-3’s text completions for Obsidian, for example,
obsidian-gpt allows users to generate text in Obsidian.

I feel quite strongly that this is a bad idea for second brains – writing content in my own
words is a crucial aspect of Molecular Notes. Though it’s possibly useful if you use Obsidian
as part of your content creation workflow.

Instead, I’m intrigued by the idea of using GPT-3 as a kind of “Jarvis”. Instead of entering
queries to search, with GPT-3 I could make requests like:

Show me my notes on investment frameworks
Summarise the above notes
Highlight any disagreements between the notes

Conclusion

https://www.notion.so/Man-and-machine-GPT-for-second-brains-4fd4b9505ce0458caf4c309df9c18c13

This was a surprisingly easy project and it’s certainly not because of my coding skills. OpenAI
has done all the heavy lifting, exposing a huge amount of functionality with some simple API
calls.

I think there are some generalisable lessons: much of the effort involved getting my data into
a suitable format for OpenAI to ingest and creating a user experience. I was lucky with the
former because my data (small text blocks) is essentially the perfect input, whereas for some
other projects people are trying to come up with clever ways of chunking up large pdf
documents so they can be embedded. The UX side was also simple because I’m happy to use a
plain CLI. I assume it’s a lot more effort to build a consumer-facing web application.

This notwithstanding, I think the barrier to building a cool product has never been lower. I
strongly encourage readers to examine their current processes to identify areas ripe for AI
integration. I don’t want to be replaced by AI, I want to be enhanced by it!

Related Posts
Molecular Notes: Practice 12 Jun 2022

Molecular Notes: Principles 18 Apr 2022

How I Read Books 24 Jan 2022

https://reasonabledeviations.com/2022/06/12/molecular-notes-part-2/
https://reasonabledeviations.com/2022/04/18/molecular-notes-part-1/
https://reasonabledeviations.com/2022/01/24/reading-philosophy/

