
TypeScript
DevBlogs

Developer

Technology

Languages

.NET

Platform Development

Data Development

Login

A Proposal For Type Syntax in JavaScript

March 9th, 2022

Today we’re excited to announce our support and collaboration on a new Stage 0

proposal to bring optional and erasable type syntax to JavaScript. Because this new
syntax wouldn’t change how surrounding code runs, it would effectively act as
comments. We think this has the potential to make TypeScript easier and faster to use
for development at every scale. We’d like to talk about why we’re pursuing this, and

how this proposal works at a high level.

Background
One recent trend our team has seen in the JavaScript world is a demand for faster

iteration time and a reduction of build steps. In other words, "make it faster and make
it simpler".

In some ways, this is already happening. Thanks to the success of evergreen browsers,
developers can often avoid compiling newer versions of JavaScript to run on older

runtimes. To some extent the same is also true of bundling – most browsers have
built-in support for using modules, so bundling can be viewed as more of an

optimization step than a necessity. This has increasingly been the case, so how is
TypeScript keeping up?

If we go back to 2012 when TypeScript was first announced, the JavaScript world was
drastically different! Some browsers shipped often, but not all. It was unclear how long

we’d be stuck with ancient versions of Internet Explorer, and that led to tools like
bundlers and compilers gaining adoption. TypeScript was able to really thrive in the

age where adding a build step to JavaScript was a given – after all, if you need to
compile your JavaScript anyway, why not compile away your types too? But if those

trends we mentioned above continue, compiling away your types might be the only
step between writing your TypeScript and running it, and we don’t want to be the

ones standing in the way of a good developer experience!

In some ways, our JavaScript support bridges the gap here, and maybe you’ve seen

this if you use an editor like Visual Studio or Visual Studio Code. Today, you can create
a .js file in your editor and start sprinkling in types in the form of JSDoc comments.

/**
 * @param a {number}
 * @param b {number}
 */
function add(a, b) {
 return a + b;
}

Because these are just comments, they don’t change how your code runs at all –
they’re just a form of documentation, but TypeScript uses them to give you a better

JavaScript editing experience through things like code completions, refactorings, and
more. You can even add type-checking by adding a // @ts-check comment to the

top of your file, or running those files through the TypeScript compiler with checkJs.

Daniel Rosenwasser

 54 0

 Theme

Fe
ed

ba
ck

https://www.microsoft.com/
https://devblogs.microsoft.com/typescript/
https://devblogs.microsoft.com/
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F
https://github.com/giltayar/proposal-types-as-comments/
https://www.typescriptlang.org/docs/handbook/intro-to-js-ts.html
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F
javascript:

This feature makes it incredibly convenient to get some of the TypeScript experience

without a build step, and you can use it for small scripts, basic web pages, server code
in Node.js, etc.

Still, you’ll notice that this is a little verbose – we love how lightweight the inner-loop is
for writing JavaScript, but we’re missing how convenient TypeScript makes it to just

write types.

So what if we had both?

What if we could have something like TypeScript syntax which was totally ignored –
sort of like comments – in JavaScript.

function add(a: number, b: number) {
 return a + b;
}

Our team believes there is a lot of potential here, and this month we’re hoping to

bring it forward in a proposal to TC39, the ECMAScript standards committee!

How Would This Work?
When we’ve been asked "when are types coming to JavaScript?", we’ve had to hesitate
to answer. Historically, the problem was that if you asked developers what they had in

mind for types in JavaScript, you’d get many different answers. Some felt that types
should be totally ignored, while others felt like they should have some meaning –

possibly that they should enforce some sort of runtime validation, or that they should
be introspectable, or that they should act as hints to the engine for optimization, and

more! But in the last few years we’ve seen people converge more towards a design
that works well with the direction TypeScript has moved towards – that types are

totally ignored and erasable syntax at runtime. This convergence, alongside the broad
use of TypeScript, made us feel more confident when several JavaScript and TypeScript

developers outside of our core team approached us once more about a proposal
called "types as comments".

The idea of this proposal is that JavaScript could carve out a set of syntax for types
that engines would entirely ignore, but which tools like TypeScript, Flow, and others

could use. This allows us to keep the things you love about TypeScript – its type-
checking and editing experience – while removing the need for a build step in

development.

So when it comes to writing and running code, a developer ’s inner-loop would look a

little different.

JSTS

JS
+ Types

Compilation
Parsing and
Execution

Parsing and
Execution

Today

Proposed

Meanwhile, writing code and type-checking would stay the same. A developer could

get instant type-checking feedback in an editor with TypeScript support, run
TypeScript on the command line, and add TypeScript as part of their CI tasks. The

biggest difference is that because we would not need a build step, we would
dramatically lower the barrier to entry for JavaScript devs to experience the power of

types and great tooling.

Fe
ed

ba
ck

https://github.com/giltayar/proposal-types-as-comments
https://github.com/giltayar/proposal-types-as-comments
https://devblogs.microsoft.com/typescript/wp-content/uploads/sites/11/2022/03/tac-announcement-today-proposed.svg
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

Type-Checking error: Type 'string' is not
assignable to type 'number'.

TS

JS
+ Types

To make this happen, JavaScript would minimally need to add syntax for things like

type annotations on variables and functions, optionality modifiers (?) for parameters
and class members, type declarations (interfaces and type aliases), and type

assertion operators (as and !) – all of which would have no effect on how the
surrounding code is run.

Things like visibility modifiers (e.g. public, private, and protected) might be in
scope as well; however, enums, namespaces, and parameter properties would be out

of scope for this proposal since they have observable runtime behavior. Those features
could be proposed as separate ECMAScript features based on feedback, but our

current goal is to support some large subset of TypeScript that we think could be a
valuable addition to JavaScript.

With this carve out, we’ve left room for type-checkers to innovate in ways that require
new syntax. That does mean that engines would happily run code with nonsensical

types, but we believe type-checkers could (and should) be prescriptive and enforce
stricter constraints than runtimes. Combined, this makes for a type syntax that could

be customized across different checkers, or removable entirely if someone decides
they’re not happy with TypeScript or any other type-checker.

What is this not?
It’s worth mentioning what this proposal isn’t.

Our team isn’t proposing putting TypeScript’s type-checking in every browser and
JavaScript runtime – nor are we proposing any new type-checker to be put in the

browser. We think doing that would cause problems for JavaScript and TypeScript
users alike due to a range of issues, such as runtime performance, compatibility issues

with existing TypeScript code, and the risk of halting innovation in the type-checking
space.

Instead, we’re just proposing syntax that is compatible with and motivated by
TypeScript, which could be used by any type-checker, but which would skipped over by

JavaScript engines. We believe that this approach is the most promising for everyone,
and would continue to allow TypeScript, Flow, and others to continue to innovate.

What’s next?
Given all this, we plan to present this proposal for Stage 1 at the upcoming March
2022 plenary meeting of TC39. We’ll be doing so with the support and guidance from

our co-champions of this proposal, Rob Palmer at Bloomberg and Romulo Cintra at
Igalia.

Reaching Stage 1 would mean that the standards committee believes that supporting
type syntax is worth considering for ECMAScript. This isn’t a sure-fire thing – there are

many valuable perspectives within the committee, and we do expect some amount of
skepticism. A proposal like this will receive a lot of feedback and appropriate scrutiny. It

may involve lots design changes along the way, and may take years to yield results.

But if we pull this all off, we have the chance to make one of the most impactful

improvements to the world of JavaScript. We’re excited by that, and we hope you are
too.

Fe
ed

ba
ck

https://devblogs.microsoft.com/typescript/wp-content/uploads/sites/11/2022/03/tac-announcement-checking-behavior.svg
https://github.com/giltayar/proposal-types-as-comments
https://tc39.es/process-document/
https://github.com/robpalme
https://github.com/romulocintra
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

Read next

If you’re interested in hearing more about the specifics and current direction, head on

over to the proposal repository. We look forward to hearing what you think!

And lastly, the TypeScript team and the champions group would like to recognize and

extend our thanks to all those who worked on prior art, along with the contributors
who reached out to help with types as comments, and especially Gil Tayar who helped

spearhead it. We’re grateful to be part of such a passionate community!

Daniel Rosenwasser Senior Program Manager, TypeScript
Follow

Announcing TypeScript 4.7 Beta
Today we are excited to announce the beta release of
TypeScript 4.7! To get started using the beta, you can use
npm with the following command: You can also get ...

Daniel Rosenwasser
April 8, 2022

7 comments

Announcing TypeScript 4.7 RC
Today we're excited to announce our Release Candidate
(RC) of TypeScript 4.7! Between now and the stable release
of TypeScript 4.7, we expect no further changes apart ...

Daniel Rosenwasser
May 11, 2022

2 comments

54 comments

Comments are closed. Login to edit/delete your existing comments

2 3 4

 Steve Davis March 9, 2022 12:21 pm 0

I love this.

 Ashley Claymore March 9, 2022 12:51 pm 0

Most excellent!

Daniel Brain March 9, 2022 12:59 pm 0

Unless this is a 1:1 match with TypeScript, we’ll still need to transpile everything right? Otherwise people who don’t want to
transpile will need to know and use a subset of TS syntax.

That problem will be exacerbated by any new TS version which introduces new syntax, keywords, and so on.

Daniel Rosenwasser March 9, 2022 3:19 pm 0

There will be certain constructs that may need to be compiled away given TypeScript authored today; however,
not everyone uses all of those features in every project, and this proposal provides an easy on-ramp for adding
type-checking to those codebases.

Jacob Stamm March 10, 2022 8:03 am 0

1

Fe
ed

ba
ck

https://github.com/giltayar/proposal-types-as-comments/
https://github.com/giltayar/proposal-types-as-comments#prior-art
https://github.com/giltayar/
https://devblogs.microsoft.com/typescript/author/danielrosenwasser
https://twitter.com/drosenwasser
https://github.com/DanielRosenwasser
https://stackoverflow.com/users/4386952/daniel-rosenwasser
https://github.com/DanielRosenwasser
https://devblogs.microsoft.com/typescript/author/danielrosenwasser/feed/
https://devblogs.microsoft.com/typescript/announcing-typescript-4-7-beta/
https://devblogs.microsoft.com/typescript/author/danielrosenwasser
https://devblogs.microsoft.com/typescript/announcing-typescript-4-7-beta/#comments
https://devblogs.microsoft.com/typescript/announcing-typescript-4-7-rc/
https://devblogs.microsoft.com/typescript/author/danielrosenwasser
https://devblogs.microsoft.com/typescript/announcing-typescript-4-7-rc/#comments
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-2#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-3#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-4#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-2#comments
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-253
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-254
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-255
https://devblogs.microsoft.com/typescript/author/danielrosenwasser/
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-258
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-277
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

I’m definitely one of those users. I could happily do everything I need to do with a version
of TypeScript from 4 years ago and none of the more advanced features that have come out
recently (except maybe the improvements to type guards… I gotta have those).

Artur Diniz Adam March 10, 2022 7:06 pm 0

It being a subset of TypeScript makes it a partial solution and adds another complexity layer for
developers to think while working on those codebases
My fear is getting locked out of nice future language features due to syntax conflicts with this
proposal while it doesn’t solve the “build tools setup” problem entirely =(

If the idea is to completely avoid setting up build tools, wouldn’t it be better to implement a
client+server side lib that enables full runtime typescript? Something like:

 <script src="lib-enable-runtime-typescript.js">
 <script src="my-ts-codebase-entrypoint.ts" type="typescript">

Shipping TS compiler to the client would be a crazy thing to do, so the lib can just delegate
compiling `my-ts-code-entrypoint.ts` to a server side solution that’s already set up, hosted on
same-origin, or perhaps a http://typescript.microsoft.com/compile

 Gabriel Dibble March 9, 2022 1:53 pm 0

 Jiahao Chen March 9, 2022 4:21 pm 0

Can’t wait for this exciting proposal to be implemented and shipped!

 Patricio Ezequiel Hondagneu Roig March 9, 2022 4:38 pm 0

I absolutely adore this proposal, I hope it becomes part of the standard.

Great job everybody!

 Haoyang Gao March 9, 2022 6:40 pm 0

Sounds great!

 Łukasz Polowczyk March 9, 2022 7:29 pm 0

PROBLEM:
* API is introduced.
* people use type-comments in other ways (they put garbage in type-comments)
* we block the syntax for the future because it would break the web. it can never be introduced in earnest again.
What do you guys think about this problem?

I mean, throwing this into type-comments doesn’t bypass all the problems at all, it just might create new problems for the
future.

Type-comments are NOT types, but ignored by the browser. This will be code that you can write ANY garbage in and it will be
valid, working code, even though TypeScript would return errors.

This is an odd situation, potentially blocking future actual type composition.

So:
Either we add types to JavaScript for real, or it’s better not to add it at all.

Fe
ed

ba
ck

https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-286
http://typescript.microsoft.com/compile
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-256
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-259
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-260
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-261
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-262
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

Because otherwise we already have to accept “hey, if you use type-comments according to the specification, but not the way
we imagine it in x years, your code will break in x years”.

—

How to get around it?
Make these type-comments allowed, only in a special dev browser mode….
This is mainly for such a purpose anyway, so that the developer doesn’t have to wait for the code to compile for him.
Then, let the developer turn on the type-comment mode in his browser.

But as far as I understand, it’s not only about compilation time? It’s also about being able to upload this “typed” code to the
web without compiling at all?
I don’t see how to solve the second problem.

Then, the problem of breaking the web disappears, as does the problem of performance degradation – it would only work in
the developer’s browser.

Riccardo Cecchini April 8, 2022 10:32 am 0

I don’t agree, for today’s parser reading a little more characters is not a problem, also is not a problem
ignoring type check during non-development execution.
TypeScript is now a community standard, and although I personally don’t like it, I prefer that typing should be
part of ECMA.

Deider Alex March 9, 2022 9:03 pm 0

What is the advantage of this proposal, other than visual, over jsDoc?

Tony Brix March 12, 2022 10:14 am 0

I’m curious about who this benefits as well. This isn’t anything browser users will see. The browser just views
this the same as jsdoc comments so there is no benefit there. Developers still need build systems for other
things (minification, etc.). I don’t see how anyone benefits from moving type comments from the typescript
binary to browsers.

Kieran Pilkington March 9, 2022 9:08 pm 0

In my view, Javascript is getting very old, and has numerous problems and quirks that have been kept for the sake of
compatibility.

While the proposal here is a nice step, the problem is it only adds to an already bloated and outdated system, lipstick on a pig
if you will.

I would much rather see the web browser industry work move forward with a modern language, designed for speed, with
inbuilt type checking.

For example, DartLang is very similar to Javascript, yet modern, type checked, well designed, free of quirks, and in my tests,
much faster.

Browsers could support Javascript and Dart side by side. Dart also has the means to convert code to javascript compatible
syntax for older browsers.

Jacob Stamm March 10, 2022 8:08 am 0

I doubt another interpreted language will come to browsers in the foreseeable future. I think WASM and
incremental evolution of JS (with breaking, non-polyfillable changes eventually being inevitable) is the best of
both worlds.

Michael Taylor March 11, 2022 8:34 am 0

Fe
ed

ba
ck

https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-310
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-263
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-295
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-264
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-278
https://devblogs.microsoft.com/typescript/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Ftypescript%2Fa-proposal-for-type-syntax-in-javascript%2F%23comment-290
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

This was tried decades ago with VBScript and it failed. Javascript wasn’t really designed to be used like it is
today. It was purposefully loose so it could be used however you wanted but that came at the cost of hard to
diagnose issues, odd behavior, etc. Some of this has been resolved in newer updates but it breaks older code.

Ultimately any new language would require browser support which means somebody would have to write the
language and then become popular enough for browsers to decide to allocate resources to integrate it. This
could easily take a decade or more. Add on top of that the fact that not all devices can be upgraded to a new
browser and therefore they would never work with a new language so your site would either need to break
compatibility or support both.

This is ultimately why languages like Typescript compile down to JS so they run anywhere. If any language
would stand a chance at being standalone it would be TS given it is popular enough but since it compiles down
to JS there is not a big benefit to browser manufacturers.

2 3 4

Top Bloggers

Daniel Rosenwasser
Senior Program Manager

Archive

November 2022

October 2022

September 2022

August 2022

June 2022

May 2022

April 2022

March 2022

February 2022

January 2022

November 2021

Relevant Links

The TypeScript Website

TypeScript on GitHub

TypeScript on Twitter

1

Fe
ed

ba
ck

https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-2#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-3#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-4#comments
https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/comment-page-2#comments
https://devblogs.microsoft.com/typescript/author/danielrosenwasser/
https://devblogs.microsoft.com/typescript/2022/11/
https://devblogs.microsoft.com/typescript/2022/10/
https://devblogs.microsoft.com/typescript/2022/09/
https://devblogs.microsoft.com/typescript/2022/08/
https://devblogs.microsoft.com/typescript/2022/06/
https://devblogs.microsoft.com/typescript/2022/05/
https://devblogs.microsoft.com/typescript/2022/04/
https://devblogs.microsoft.com/typescript/2022/03/
https://devblogs.microsoft.com/typescript/2022/02/
https://devblogs.microsoft.com/typescript/2022/01/
https://devblogs.microsoft.com/typescript/2021/11/
https://www.typescriptlang.org/
https://github.com/Microsoft/TypeScript/
https://twitter.com/typescript
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

What's new

Surface Pro 9

Surface Laptop 5

Surface Studio 2+

Surface Laptop Go 2

Surface Laptop Studio

Surface Duo 2

Microsoft 365

Windows 11 apps

Microsoft Store

Account profile

Download Center

Microsoft Store support

Returns

Order tracking

Personal shopping
appointments

Microsoft Store Promise

Flexible Payments

Education

Microsoft in education

Devices for education

Microsoft Teams for
Education

Microsoft 365 Education

Education consultation
appointment

Educator training and
development

Deals for students and
parents

Azure for students

Business

Microsoft Cloud

Microsoft Security

Dynamics 365

Microsoft 365

Microsoft Power Platform

Microsoft Teams

Microsoft Industry

Small Business

Developer & IT

Azure

Developer Center

Documentation

Microsoft Learn

Microsoft Tech Community

Azure Marketplace

AppSource

Visual Studio

Company

Careers

About Microsoft

Company news

Privacy at Microsoft

Investors

Diversity and inclusion

Accessibility

Sustainability

Sitemap Contact Microsoft Privacy Terms of use Trademarks Safety & eco About our ads © Microsoft 2022

Stay informed

Fe
ed

ba
ck

https://www.microsoft.com/en-us/d/surface-pro-9/93VKD8NP4FVK
https://www.microsoft.com/en-us/d/surface-laptop-5/8XN49V61S1BN
https://www.microsoft.com/en-us/d/surface-studio-2plus/8VLFQC3597K4
https://www.microsoft.com/en-us/d/surface-laptop-go-2/8PGLPV76MJHN
https://www.microsoft.com/en-us/d/surface-laptop-studio/8SRDF62SWKPF
https://www.microsoft.com/en-us/d/surface-duo-2/9408KGXP4XJL
https://www.microsoft.com/microsoft-365
https://www.microsoft.com/windows/windows-11-apps
https://account.microsoft.com/
https://www.microsoft.com/en-us/download
https://go.microsoft.com/fwlink/?linkid=2139749
https://go.microsoft.com/fwlink/p/?LinkID=824764&clcid=0x409
https://account.microsoft.com/orders
https://www.microsoft.com/en-us/store/b/online-computer-shopping-appointments?icid=CNavfooter_personalshopping
https://www.microsoft.com/en-us/store/b/why-microsoft-store?icid=footer_why-msft-store_7102020
https://www.microsoft.com/en-us/store/b/payment-financing-options?icid=footer_financing_vcc
https://www.microsoft.com/en-us/education
https://www.microsoft.com/en-us/education/devices/overview
https://www.microsoft.com/en-us/education/products/teams
https://www.microsoft.com/en-us/education/buy-license/microsoft365
https://www.microsoft.com/en-us/store/b/business-consultation?tab=educationconsultation&icid=CNavfooter_educationconsultation
https://education.microsoft.com/
https://www.microsoft.com/en-us/store/b/education
https://azure.microsoft.com/en-us/free/students/
https://www.microsoft.com/en-us/microsoft-cloud
https://www.microsoft.com/en-us/security
https://dynamics.microsoft.com/en-us/
https://www.microsoft.com/en-us/microsoft-365/business/
https://powerplatform.microsoft.com/en-us/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/industry
https://www.microsoft.com/en-us/store/b/business?icid=CNavBusinessStore
https://azure.microsoft.com/en-us/
https://developer.microsoft.com/en-us/
https://learn.microsoft.com/docs/
https://learn.microsoft.com/
https://techcommunity.microsoft.com/
https://azuremarketplace.microsoft.com/en-us/
https://appsource.microsoft.com/en-us/
https://visualstudio.microsoft.com/
https://careers.microsoft.com/
https://www.microsoft.com/about
https://news.microsoft.com/
https://privacy.microsoft.com/en-us
https://www.microsoft.com/investor/default.aspx
https://www.microsoft.com/en-us/diversity/
https://www.microsoft.com/en-us/accessibility
https://www.microsoft.com/en-us/sustainability/
https://www.microsoft.com/en-us/sitemap1.aspx
https://support.microsoft.com/contactus
https://go.microsoft.com/fwlink/?LinkId=521839
https://go.microsoft.com/fwlink/?LinkID=206977
https://go.microsoft.com/fwlink/?linkid=2196228
https://go.microsoft.com/fwlink/?linkid=2196227
https://choice.microsoft.com/
https://twitter.com/typescriptlang
https://devblogs.microsoft.com/typescript/feed/
https://www.facebook.com/sharer/sharer.php?u=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
https://twitter.com/intent/tweet?url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/&text=A%20Proposal%20For%20Type%20Syntax%20in%20JavaScript
https://www.linkedin.com/shareArticle?mini=true&url=https://devblogs.microsoft.com/typescript/a-proposal-for-type-syntax-in-javascript/
javascript:

