
Light - Dark - RedQotNews
Hacker News, Reddit, Lobsters, and Tildes articles rendered in reader mode.

Sorting 400+ Chrome tabs in seconds
Source: blog.entropy.observer
44 points by thecupisblue 6 hours ago on hackernews | 46 comments

Feb 16, 2023

I'm a serial tabbist. I admit it.

Currently, I have about 460 tabs open across 5 brave windows. Let's

not even get started on the bookmarks.

"B-b-but, they're all necessary! So much knowledge! So many

good links!"

- My inner hoarder

Yeah, I'm like an information hamster. I just keep hoarding all the

tabs until I can find enough time to read everything - and open even

more of them on the way. And as one can assume, having so many

tabs can be quite overwhelming, either when I need to find

something and it's lost beyond the borders of the tab bar or when I'm

just looking at the screen and getting the anxious feeling of "having

so much to do" - even when there is nothing to be done.

So, being the lazy hacker I am, instead of actually sorting them,

cleaning them up

https://news.t0.vc/
https://blog.entropy.observer/sorting-400-tabs-in-60-seconds/
https://news.ycombinator.com/user?id=thecupisblue
https://news.ycombinator.com/item?id=34826884
https://news.t0.vc/SRCY/c
https://news.t0.vc/SRCY/c

or *gulp* simply closing them all, I wondered - why not just let the

machine do the job? Can I have a 1-click solution to all my woes?

Can I Marie-Kondo my inner hoarder into submission by using code?

Luckily for us, there is a giant language model worth billions of

dollars just waiting to eagerly do the job. The idea is simple: Give

GPT3 a list of items and ask it to return a list of categories those

items belong to. Wrap all that up into a chrome extension and let

the magic happen.

So, let's crack our fingers and get coding.. or.. oh... wait..

The sweet taste of complexity

Let's backpedal a bit. So, our plan sounds simple enough. But as it

usually goes in software, we missed out on some key details that are

going to blow up our scope and budget if we don't think about them

properly.

Some of the key issues to think about before we dive into code head

first and find ourselves in a world of regret are:

Prompt token limits

OpenAI's language models have token limits - 2048 or 4096

tokens.

Since each token is about 4 characters, that limits our prompt

and response size to 8192/16384 characters respectively.

There are a few ways we can get around this problem (we'll

cover all of them):

- Cutting our prompt into consumable chunks

- Optimising the data sent to reduce token count

- Fine-tuning a model for our task

API Key security

Since OpenAI API charges API calls by tokens used, our API key

needs to be hidden somewhere safe. Hardcoding it in our

extension is a no-no - unless we really want to pay OpenAI

https://news.t0.vc/SRCY/c

millions of dollars in bills because some bored script kiddy

decided to scrape our key.

User privacy

Tab titles and URL's can reveal sensitive things - private

documents,

links, session ID's and a lot of data about a person. We want

users to be able to trust the extension, so we want to open-

source it, have it build and deploy from that source and make it

easy to deploy for others.

Ease of update

Since LLM's can be fickle with their responses and OpenAI API

could incur us insane usage costs due to simple mistakes, we

want to have control over updates instead of letting the users

do it at their whim. That means our most important code cannot

reside in the extension.

How do we solve those issues?

We'll take a simple route - instead of writing all of the logic in the

extension itself, we'll hide it behind an API - we'll build a simple

backend service that will receive the tab data from the extension,

chunk our prompts, communicate with OpenAI's API and reduce the

data back into a single response. This enables us to both secure our

keys, control our updates and open-source the extension without

giving our secret token away.

To do this, we'll be using Rust - with Axum as our backend

framework, Shuttle as our deployment platform and Github Actions

as our CI.

So, before we get into code, let's do some napkin sketches to get an

overview of what we're building:

https://github.com/tokio-rs/axum
https://shuttle.rs/
https://github.com/features/actions
https://news.t0.vc/SRCY/c

(Not a real napkin - made with okso.app, an amazing whiteboarding

app made by Oleksii Trekhleb)

Step 1: Building the Extension

Chromium extension are quite simple to build - they're basically just

tiny webpages that live inside your browser and (with proper

permissions) are given access to your browser by using your

browser's API. We'll be relying on the Chrome API - it's the API

Google Chrome uses - and which many Chromium project based

browsers expose (such as Brave, which I'm using, and even Edge, tho

with a different namespace). Other browsers, like Firefox or Safari

aren't built off of the Chromium project, but provide a quite similar

extension API. If you want to know more about the differences

between them, I'd suggest this MDN article.

Specifically we'll be focusing on these two API's:

chrome.tabs - enables us to query tabs our user currently has

opened

chrome.tabGroups - enables us to query existing groups,

create new ones and move tabs inside them

So let's get to building. To bootstrap our extension, we'll be using

Chrome extension CLI - it will generate the initial project structure

we need.

So, hit the terminal with:

https://okso.app/
https://github.com/sponsors/trekhleb
https://developer.chrome.com/docs/extensions/reference/
https://www.chromium.org/chromium-projects/
https://brave.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Differences_between_API_implementations
https://github.com/dutiyesh/chrome-extension-cli
https://news.t0.vc/SRCY/c

npm install -g chrome-extension-cli

chrome-extension-cli bookie-js

cd bookie-js

Follow the instructions at the end and load the build folder as an

extension - it will allow you to load and test your extension via hot

reload, so every change will be immediately visible.

Now, take a peek inside the structure it generated - most of it is self-

explanatory,

├── README.md

├── config

│ ├── paths.js

│ ├── webpack.common.js

│ └── webpack.config.js

├── node_modules

├── package-lock.json

├── package.json

├── pbcopy

├── public

│ ├── icons

│ ├── manifest.json

│ └── popup.html

└── src

 ├── background.js

 ├── contentScript.js

 ├── popup.css

 └── popup.js

We're mostly interested in only three files for now:

public/manifest.json

The manifest is a JSON file which provides the browser with

information about your extension, such as name, it's capabilities,

how it's started, which file to display, scripts to run on pages and

many more. A few fields to note there for us:

https://developer.chrome.com/docs/extensions/mv3/manifest/
https://news.t0.vc/SRCY/c

default_popup - the HTML file to show when the extension

icon is clicked

permissions - we need them to access certain parts of Chrome

API

host_permissions - a set of URL patterns your extension can

access

For now, we'll leave it all as it is and come back to it later.

src/popup.html

The starting point of our UI. This HTML pops up when we click the

extension button in the browser, so we'll use it to build a simple

interface here.

We'll have a 'Sort' button that calls our API's /sort endpoint and

returns the result, a loading bar and a simple error box in case

anything goes wrong.

For debugging, we can also have a "Show tabs" button that will show

as a list of all of our tabs. So let's write some simple HTML for it:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <title>Bookie JS</title>

 <link rel="stylesheet" href="popup.css" />

 </head>

 <body>

 <div class="app">

 <div class="button-container">

 <!-- This will call our API -->

 <button id="sortBtn" class="button">Sort my mes

 <div id="loading" class="loading"></div>

 <div id="error" class="error"></div>

 </div>

 </div>

 <script src="popup.js"></script>

https://news.t0.vc/SRCY/c

</body>

</html>

src/popup.js

This is where our JS will reside. We ain't gonna use no fancy

bulletproof cybernetically CRISPR'd SSSR JavaScript framework, it's

going to be our plain ol' vanilla JS. To update the UI, we will rely on

a simple render(state) function that manipulates DOM elements

using some simple show and hide functions (by changing

element.style.display to block/none).

Now, let's write our thought process down by writing it into

functions:

'use strict';

import './popup.css';

(function () {

const SORT_BTN = 'sortBtn';

const LOADING = 'loading';

const ERROR = 'error';

// get tabs & groups from the API

async function getTabsAndGroups(){};

// call backend with the data

async function callBackendToSort(tabsAndGroups){};

// apply result to browser

async function applySort(sortedCategories){};

//runs our app

async function run(){

http://vanilla-js.com/
https://news.t0.vc/SRCY/c

 //get tabs

 let tabsAndGroups = await getTabsAndGroups();

 render({loading: false, error: null}

 let btn = document.getElementById('sortBtn')

 //on click, call the API, show loading and apply the

 btn.addEventListener('click',async ()=> {

 render({loading: true, error: null}

 try {

 let result = await callBackendToSort(tabsAndG

 await applySort(result)

 render({loading: false, error: undefined})

 }catch (e){

 render({loading: false, error: e})

 }

 })

}

//load our run function when the content loads

document.addEventListener('DOMContentLoaded', run);

})();

Our first step will be querying the Chrome API for tabs and groups.

As we can see in the docs, we can use chrome.tabs.query to

achieve this.

https://news.t0.vc/SRCY/c

So, let's try it:

async function getTabsAndGroups() {

 let chromeTabs = await chrome.tabs.query({})

 console.log(chromeTabs)

 }

Not working? Now, remember that public/manifest.json file?

And the permissions object?

Well, to access tabs, their titles and groups, we'll need to add

matching permissions to it. So open up the manifest.json and

under permissions add "tabs", "tabGroups". Now when

installing, chrome can check your extensions permissions and let the

user know what you're accessing.

But, to be able to access the tabs API, we'll need one other special

permission called host-permissions. It tells the user which

websites the extension is enabled to run on, so if we want to be able

to use it on all tabs we'll need to add the proper URL pattern. So add

a new property to the manifest.json called host-permissions

with a pattern allowing it to match all URL's such as

"host_permissions": ["*://*/*"]. Finally, now we are able

to access all of the user's tabs and groups.

Now that it's working, the data the chrome.tabs.query method

returns will contain a few things we'll need: id, title and

groupId. We'll be using id and title for sorting, and groupId to

https://news.t0.vc/SRCY/c

query existing groups, so first, we'll map the returned object to a

simplified version of it, using only the properties we need.

To get more data about groups, we'll create tabsForGroups

function which will find all the unique groups and query Chrome API

by using chrome.tabGroups.get(id) to get the title of each

group.

async function tabsToGroups(tabs){

 //get all existing groupIds from tabs

 let groupIds = tabs

 .map((it)=>it.groupId)

 .filter((it)=>it!==null && it!==undefined && it

 //push them into a set to get unique ones

 let groups = new Set(groupIds)

 //query chrome API for data about each tab group

 return await Promise.all([...groups]

 .map(async (it) => {

 let item = await chrome.tabGroups.get(it)

 return {

 id: item.id,

 title: item.title

 }

 }));

 }

// now our function can return us all of our tabs and

async function getTabsAndGroups() {

 let chromeTabs = await chrome.tabs.query({})

 let tabs = await mapTabs(chromeTabs)

 let tabsWithGroups = await tabsToGroups(tabs)

 let groups = tabsWithGroups.filter((it)=>it.titl

 return {

 items: tabs,

 categories: groups

https://news.t0.vc/SRCY/c

 }

 }

Boom, in a few simple steps we have the list of our existing groups

and tabs.

The API calling function is also quite simple. Since our API doesn't

exist yet,

we'll just write a generic POST request to localhost:

async function callBackendToSort(data){

 return await fetch('http://127.0.0.1:8000/sort',{

 method: 'POST',

 headers: {'Content-Type': 'application/json'},

 body: JSON.stringify({

 items: data.items,

 categories: data.categories

 })

 })

}

Our render function is quite simple too - we just check the state and

change our UI accordingly.

function render(state){

 if(state.loading){

 show(LOADING)

 hide(SORT_BTN)

 hide(ERROR)

 }else{

 hide(LOADING)

 show(SORT_BTN,true)

 }

 if(state.loading!==true &&

 (state.error!==undefined && state.error!=null))

 show(ERROR)

 showError(state.error)

 }else

https://news.t0.vc/SRCY/c

 hide(ERROR)

}

All that's now left to do is implement the applySort function which

will apply our new categories to the browser itself.

The idea is:

Check if the group exists

If it doesnt, create it

Update it's tabs list and title

For this, we have a bit of API research to do - the documentation

covering this part is a bit confusing. You'd expect to be able to have

something like

chrome.tabGroups.create or chrome.tabGroups.update

which would change tabs in the group, but... that's naive thinking.

To create a group we use the API call chrome.tabs.group by NOT

passing the chrome.tabs.group a groupId. Then, the group will

be created and the new groupId returned to you. This is kind of a

weird call by the chrome team - if groups are just containers of tabs,

why would tabs have knowledge and control over them?

Shouldn't the groups be created and managed via groups API?

Oh also, if you want to add tabs to the group, you use the same call

and pass it the array of tabs via tabIds. "Hey can I pass in the title

too since we're already creating and updating the object via this API

call?" No, for that you'll use chrome.tabGroups.update API call.

I assumed this weird syntax is because groups were a later addon in

chrome so support was retrofitted into the tabs API itself. So let's

test that assumption. Looking at the commit that added groups to

the Tabs API, we can find the same discussion in the comments,

leading us to the Tab Group API proposal. It seems the team decided

to split the responsibilities between tab management and group

management. Since moving a tab is tab management, it's responsibility

belongs in the Tabs API.

https://chromium-review.googlesource.com/c/chromium/src/+/2414921?tab=comments
https://docs.google.com/document/d/1WgNtyBSuSmmHIuENU8IKLZmSK3tAVPpnjwjfD3clxqI/edit?disco=AAAAGpyGs6I
https://news.t0.vc/SRCY/c

The alternative proposal was also discussed (putting that

responsibility in the TabGroups API), along with it's pros and cons:

From my perspective (as the user of the API), the cons list doesn't

seem that bad. Tabs wouldn't need to know about groups, user

security would be increased (extensions would only need

tabGroups permission, reducing the potential area for malicious

abuse by extensions) and it would hide the implementation details,

replacing them with an intuitive API, which is what abstractions are all

about. Weird decision none the less.

But enough talking about the spaghetti, let's write some down.

function applySort(sortedCategories){

/* The response object we want looks like:

{ categories: [

{ category_id: int, category_title: string, i

] }

*/

 for (i = 0; i < sortedCategories.categories.length;

 let category = sortedCategories.categories[i]

 let categoryId = category.category_id

 //check if the group with ID exists

 let groupExists = await chrome.tabGroups.get(cat

 .catch((e)=>u

 let groupId;

 if(groupExists === undefined)

 //if it doesnt, the chrome.tabs.group return

 groupId = await chrome.tabs.group({ tabIds:

 else {

 //if it does, we use the existing one

 groupId = groupExists.id

https://news.t0.vc/SRCY/c

 await chrome.tabs.group({groupId: groupId,

 tabIds: category.item

 }

 // Set the title of all groups and collapse the

 await chrome.tabGroups.update(groupId, {

 collapsed: true,

 title: category.title

 });

 })

}

With this, our JS extension MVP is done.

- We collect the tabs and groups

- We send them to the API

- We apply the returned sort.

Now, we don't have an API yet, so how do we test it?

We should write down some unit tests, but let's leave that for

another day (no really - a few posts down we'll look into testing a

chrome extension with Jest). For now, we can fake the return of

callBackendToSort function to include a few categories and a few

tab id's - something like this (but with your tab id's):

{

"categories": [{

"category_id": 837293848,

"category_name": "Hacker News",

"items": [1322973609, 1322973620]

}, {

"category_id": 837293850,

"category_name": "Science",

"items": [1322973618, 1322973617, 132

}, {

"category_id": 837293851,

https://news.t0.vc/SRCY/c

"category_name": "GitHub",

"items": [1322973619]

}, {

"category_id": 837293852,

"category_name": "Web Development",

"items": [1322973612, 1322973613, 132

}, {

"category_id": 837293853,

"category_name": "Web APIs",

"items": [1322973646]

}]

}

Now we can move on to the fun parts - building that API, prompt

optimisations, GPT timeouts and fixing mistakes we'll make in the

days of the future past.

Oh and we'll also be adding some more complexity and feature

creep, but more on that later.

Stay tuned for Part 2 where we'll continue our adventure with

everyone's favourite crab - Rust.

Rusty the crab cute illustration, simple, clean, 2022 (The Artist Is A

Machine)

https://news.t0.vc/SRCY/c

