
TkDodo's blog

Blog Tags Sponsors Rss Twitter Github

Status Checks in React Query
27.03.2021 � react, React Query, JavaScript, TypeScript — 3 min read

Photo by Kyndall Ramirez

Last Update: 23.04.2022

#1: Practical React Query
#2: React Query Data Transformations
#3: React Query Render Optimizations
#4: Status Checks in React Query
#5: Testing React Query
#6: React Query and TypeScript
#7: Using WebSockets with React Query

https://tkdodo.eu/blog/
https://tkdodo.eu/blog/all
https://tkdodo.eu/blog/tags
https://tkdodo.eu/blog/sponsors
https://tkdodo.eu/blog/rss.xml
https://twitter.com/tkdodo
https://github.com/tkdodo
https://tkdodo.eu/blog/tags/react
https://tkdodo.eu/blog/tags/react-query
https://tkdodo.eu/blog/tags/java-script
https://tkdodo.eu/blog/tags/type-script
https://unsplash.com/@kyndallramirez
https://tkdodo.eu/blog/practical-react-query
https://tkdodo.eu/blog/react-query-data-transformations
https://tkdodo.eu/blog/react-query-render-optimizations
https://tkdodo.eu/blog/testing-react-query
https://tkdodo.eu/blog/react-query-and-type-script
https://tkdodo.eu/blog/using-web-sockets-with-react-query

#8: Effective React Query Keys
#8a: Leveraging the Query Function Context

#9: Placeholder and Initial Data in React Query
#10: React Query as a State Manager
#11: React Query Error Handling
#12: Mastering Mutations in React Query
#13: Offline React Query
#14: React Query and Forms
#15: React Query FAQs
#16: React Query meets React Router
#17: Seeding the Query Cache
#18: Inside React Query
#19: Type-safe React Query

Español Add translation

One advantage of React Query is the easy access to status fields of the query. You instantly know if your
query is loading or if it's erroneous. For this, the library exposes a bunch of boolean flags, which are mostly
derived from the internal state machine. Looking at the types, your query can be in one of the following
states:

success : Your query was successful, and you have data for it
error : Your query did not work, and an error is set
loading : Your query has no data and is currently loading for the first time
idle : Your query has never run because it's not enabled

Update: In v4 of React Query, the idle state has been removed. The loading state just means "you
have no data yet".

Note that the isFetching flag is not part of the internal state machine - it is an additional flag that will
be true whenever a request is in-flight. You can be fetching and success, you can be fetching and error -
but you cannot be loading and success at the same time. The state machine makes sure of that.

Update: In v4, the isFetching flag is derived from a secondary fetchStatus - just like the new
isPaused flag. You can read more about this in #13: Offline React Query.

The idle state is mostly left out, because it's an edge case for disabled queries. So most examples look
something like this:

The standard example

https://tkdodo.eu/blog/effective-react-query-keys
https://tkdodo.eu/blog/leveraging-the-query-function-context
https://tkdodo.eu/blog/placeholder-and-initial-data-in-react-query
https://tkdodo.eu/blog/react-query-as-a-state-manager
https://tkdodo.eu/blog/react-query-error-handling
https://tkdodo.eu/blog/mastering-mutations-in-react-query
https://tkdodo.eu/blog/offline-react-query
https://tkdodo.eu/blog/react-query-and-forms
https://tkdodo.eu/blog/react-query-fa-qs
https://tkdodo.eu/blog/react-query-meets-react-router
https://tkdodo.eu/blog/seeding-the-query-cache
https://tkdodo.eu/blog/inside-react-query
https://tkdodo.eu/blog/type-safe-react-query
https://parang.gatsbyjs.io/react/2022-react-04/
https://rubenvara.io/react-query/comprobar-estado-react-query/
https://juejin.cn/post/7170939711991742477
https://github.com/TkDodo/blog/blob/main/CONTRIBUTING.md#translations
https://github.com/tannerlinsley/react-query/blob/f2137dc4e4553256c4ebc1891b548fe35efe9231/src/core/types.ts#L250
https://tkdodo.eu/blog/offline-react-query

standard-example

Here, we check for loading and error first, and then display our data. This is probably fine for some use-
cases, but not for others. Many data fetching solutions, especially hand-crafted ones, have no refetch
mechanism, or only refetch on explicit user interactions.

But React Query does.

It refetches quite aggressively per default, and does so without the user actively requesting a refetch. The
concepts of refetchOnMount , refetchOnWindowFocus and refetchOnReconnect are great for
keeping your data accurate, but they might cause a confusing ux if such an automatic background refetch
fails.

In many situations, if a background refetch fails, it could be silently ignored. But the code above does not
do that. Let's look at two examples:

The user opens a page, and the initial query loads successfully. They are working on the page for
some time, then switch browser tabs to check emails. They come back some minutes later, and
React Query will do a background refetch. Now that fetch fails.
Our user is on page with a list view, and they click on one item to drill down to the detail view. This
works fine, so they go back to the list view. Once they go to the detail view again, they will see data
from the cache. This is great - except if the background refetch fails.

In both situations, our query will be in the following state:

const todos = useTodos()

if (todos.isLoading) {

return 'Loading���'

}

if (todos.error) {

return 'An error has occurred: ' + todos.error.message

}

return <div>{todos.data.map(renderTodo)}��div>

JSX

1

2

3

4

5

6

7

8

9

10

Background errors

{

"status": "error",

JSON

1

2

Copy

Copy

As you can see, we will have both an error and the stale data available. This is what makes React Query
great - it embraces the stale-while-revalidate caching mechanism, which means it will always give you
data if it exists, even if it's stale.

Now it's up to us to decide what we display. Is it important to show the error? Is it enough to show the
stale data only, if we have any? Should we show both, maybe with a little background error indicator?

There is no clear answer to this question - it depends on your exact use-case. However, given the two
above examples, I think it would be a somewhat confusing user experience if data would be replaced with
an error screen.

This is even more relevant when we take into account that React Query will retry failed queries three times
per default with exponential backoff, so it might take a couple of seconds until the stale data is replaced
with the error screen. If you also have no background fetching indicator, this can be really perplexing.

This is why I usually check for data-availability first:

data-first

Again, there is no clear principle of what is right, as it is highly dependent on the use-case. Everyone
should be aware of the consequences that aggressive refetching has, and we have to structure our code
accordingly rather than strictly following the simple todo-examples 😉.

Special thanks go to Niek Bosch who first highlighted to me why this pattern of status checking can be
harmful in some situations.

"error": { "message": "Something went wrong" },

"data": [{ ��� }]

}

3

4

5

const todos = useTodos()

if (todos.data) {

return <div>{todos.data.map(renderTodo)}��div>

}

if (todos.error) {

return 'An error has occurred: ' + todos.error.message

}

return 'Loading���'

JSX

1

2

3

4

5

6

7

8

9

10

Copy

https://github.com/boschni

Feel free to reach out to me on twitter if you have any questions, or just leave a comment below ⬇

Like the monospace font in the code blocks?

Check out monolisa.dev

© 2023 by TkDodo's blog. All rights reserved.
Theme by LekoArts

https://twitter.com/tkdodo
https://a.paddle.com/v2/click/105822/165267?link=2447
https://bytes.dev/?r=dom
https://github.com/LekoArts/gatsby-themes/tree/main/themes/gatsby-theme-minimal-blog
https://www.lekoarts.de/?utm_source=minimal-blog&utm_medium=Theme

