
home  projects  flightradar

Flightradar is a project u�lizing a RTL-SDR for real-
�me flight mapping wri�en in Angular and Go.

S E E I T O N G I T H U B O R S E E T H E L I V E V E R S I O N

Flightradar uses a RTL-SDR for receiving ADS-B data sent by MODE-S compa�bile aircra� transponders. Frontend and

backend for this project are available on Github. The frontend was par�ally copied from my Vatsim project (with significant

modifica�ons which mainly involved removing most of the features) while the backend was created from scratch using Go.

The live version of this project is available here. Click on the planes to see more details about them and click in the bo�om le�

to toggle various map layers such as the polar range chart or see the sta�s�cs.

https://0x46.net/
https://0x46.net/projects/
https://0x46.net/projects/flightradar/
https://github.com/boreq?tab=repositories&q=flightradar
https://flightradar.0x46.net/
https://github.com/boreq/flightradar-frontend
https://github.com/boreq/flightradar-backend
https://0x46.net/projects/vatsim/
https://flightradar.0x46.net/

The Antenna

Personally I know nothing about designing antennas. If you also wish to read something that will completely go over your head I

recommend a very comprehensive writeup available at h�p://www.antenna-theory.com/.

While ini�ally I used the stock antenna that came with my SDR kit my goal was always to test different antenna configura�ons
and eventually construct a custom weather-proofed antenna. I do not use addi�onal amplifiers or filters since my recep�on

range is mainly limited by the surrounding buildings obstruc�ng my view of the horizon.

Due to the ADS-B frequency being 1090 MHz in the following sec�ons you will o�en see measurements such as 69 mm which

is 1/4 of the ADS-B wavelength.

The stock dipole antenna

At first my setup used a stock dipole antenna which was provided with my RTL-SDR kit described in the next sec�on. The
antenna is well constructed and comes with a tripod. I think that having it outside can however eventually cause corrosion due

to the adverse weather condi�ons.

The cantenna

The cantenna was developed by the most secret cells of the underground ADS-B community. For reasons unknown to science

and reason it outperforms many professional antennas. As demonstrated by the users on the linked websites it is very easy to
weather-proof this antenna by adding a professional enclosure made out of highly specialized plas�c bo�le.

The SDR

For now I use a very basic kit available at the RTL-SDR community website. The kit is listed as "RTL-SDR Blog R820T2

RTL2832U 1PPM TCXO SMA So�ware Defined Radio with Dipole Antenna Kit" in the store available on the website.

If you wish to play with the SDR without using it for tracking aircra� I can recommend using a program called gqrx. Since it is
rela�vely popular your Linux distribu�on should have the packages already available. Gqrx is good for beginners and works

great when tuning in to the standard radio sta�ons, aircra� traffic control, navaids such as VORs or other interes�ng radio

sources.

Communica�ng with the SDR

http://www.antenna-theory.com/
https://0x46.net/projects/flightradar/media/antenna_stock.jpg
https://0x46.net/projects/flightradar/media/antenna_stock_range.png
https://forum.planefinder.net/threads/ads-b-diy-antenna.23/page-16
https://forum.planefinder.net/threads/ads-b-diy-antenna.23/page-189
http://www.radioforeveryone.com/p/testing-diy-homebrew-ads-b-antennas-feb.html
https://0x46.net/projects/flightradar/media/antenna_cantenna.jpg
https://0x46.net/projects/flightradar/media/antenna_cantenna_range.png
https://www.rtl-sdr.com/
http://gqrx.dk/

In order to avoid implemen�ng message decoding myself I use a fork of a popular dump1090 program. The program

communicates with the SDR, parses the incoming ADS-B messages and exposes a web interface which can be used to retrieve

the messages. The messages can also be printed directly to standard output and the program provides its own implementa�on
of a real�me map, if you don't feel like wri�ng your own version. Dump1090 is widely used and even the websites like

Flightradar24 or FlightAware use it in their infrastructure. Unfortunately the original program is no longer maintained, and as of

now the fork appears to be abandoned as well.

Processing the data

The backend which downloads the messages from dump1090 and stores them in a database has been wri�en in Go. It exposes

a JSON API used by the frontend which can be used to selec�vely retrieve the collected data points based on the �me or
involved aircra�.

Op�mizing the backend and making it work rela�vely quickly on Raspberry Pi turned out to be the task taking the most of the

�me when wri�ng this part of the project and required several changes to the ini�al design.

Picking the right database

Ini�ally the backend stored the data in flat files. Each file contained JSON encoded data points separated by a newline

character and the data for each plane was stored in a separate file. While this was an efficient approach when wri�ng the data
to the SD card the abysmal I/O performance of the Raspberry Pi quickly made reading the data in order to analyze it impossible

with simple lookups taking over 30 seconds.

In order to mi�gate that issue I decided to switch to using a rela�onal database. To avoid running a fully featured database such

as PosgreSQL on already struggling Raspberry Pi running a large number of other programs I decided to use SQLite3. I loaded

the already exis�ng data into the database and waited as more data was being collected. While ini�ally the improvement was
significant I quickly realised that for reasons unknown to me the database was not performing as well as I hoped. Despite all

required indexes being present from the beginning a�er analyzing all of the queries that were being performed I couldn't find

the reason for the poor performance other than the slow I/O. I also considered the possibility of the Go SQLite bindings

underperforming for some reason but found no proof of that. SQLite also came with a different major issue that was a problem

for me. Because the bindings (or actually the en�re SQLite implementa�on - por�ng it is simply unrealis�c) were using CGo,
that is they were actually wri�en in C, the cross-compila�on for Raspberry Pi was annoyingly more complicated than simply

running the go build command. At the same �me the build �mes on Raspberry Pi jumped to almost thirty minutes a�er

including the SQLite in my project. Because of that issue and the performance leaving much to be desired I decided to switch to

a different database again.

A�er a couple of days and some searching I stumbled upon a very promising key/value store called Bolt. Bolt is wri�en purely in
Go which means that the cross-compila�on process is extremly simple and at the same �me offers a very good performance.

A�er some tes�ng I again imported the exis�ng data into Bolt. The performance gain was significant however the database

sizes quickly turned out to be rather large. While the SQLite database or even a simple JSON file with the exported data

measured about 20MB at that �me the Bolt database was 5 �mes larger at about 100MB. Using the tools provided by Bolt I

quicky discovered that the large database size is related to the way the data points were distributed Bolt pages. A lot of the
space that appeared to be wasted was actually unused. A�er running an official database-shrinking tool on my data I discovered

that in fact it made the database even larger instead of shrinking it. A�er that failure I simply decided to pay the database size

no a�en�on. As it quickly turned out later on the database was not growing at such a quick rate anymore.

Replacing JSON

https://github.com/MalcolmRobb/dump1090
https://www.flightradar24.com/
https://flightaware.com/
https://github.com/boltdb/bolt

The second issue that was affec�ng the performance was related to data serializa�on and deserializa�on. As I men�oned earlier

the data was being stored in the flat files and later on in the Bolt database in the JSON format. While profiling the backend I

quickly discovered that while reading the data Raspberry Pi was spending a dispropor�onal amount of �me decoding JSON
encoded data points. In order to improve the performance (and at the same �me reduce the size of the database) I eventually

decided to switch to much more efficient binary format Protocol Buffers developed by Google. While the API s�ll uses JSON

the performance impact is less significant there and JSON is rather hard to replace in public facing APIs due to its popularity

and wide support.

Reducing the amount of collected data

At first the backed was indiscriminately collec�ng data for each aircra� in 5 second intervals. A�er a couple of days it became
clear that the backend is collec�ng about 30000-35000 data points per day and that the amount of collected that will quickly

become unmanageable. In order to reduce the amount of data a series of op�miza�ons had to be implemented.

The first op�miza�on involved rejec�ng data points for which the posi�on of the aircra� was iden�cal to the one already

stored. This issue is related to the fact that there is no way to check if the posi�on (or anything else) was updated when

downloading data from dump1090. In order to micromanage that it would be necessary to parse the standard output of the
program which I am sure would quickly become annoying due to the large amount of different formats of printed ADS-B

messages. This change led to reducing the amount of collected data points by about 20%.

The second op�miza�on involved introducing different collec�on intervals for the aircra� going at different al�tudes. As the

aircra� at higher al�tudes don't turn as sharply as the aircra� at lower al�tudes there is no need to store all the excess data

that they are genera�ng. The data for aircra� flying above 30000 feet at some point consi�tuded about 80% of daily collected
data points. Aiming to reduce that amount I introduced the following mapping of collec�on intervals to al�tudes that led to

further reduc�on in the total amount of collected data points by about 70%:

every 5 seconds below 10000 feet

every 10 seconds 10000-15000 feet

every 15 seconds 15000-20000 feet
every 20 seconds 20000-25000 feet

every 25 seconds 25000-30000 feet

every 30 seconds above 30000 feet

The last op�miza�on involved replacing the discrete intervals for each al�tude with a con�nuous func�on. Currently the

al�tudes between min and max al�tude are mapped directly onto the �mes between min and max �me. Adjus�ng the se�ngs
led to further reducing the number of collected data points on average by about 50%.

min al�tude: 10000

max al�tude: 30000

min �me: 10s

max �me: 60s

https://developers.google.com/protocol-buffers/

Trigonometric func�ons

A�er op�mizing the database read �mes I was confident that calcula�ng the polar range graphs will be a breeze. To my dismay I

quickly discovered that when a large number of data points was being processed on a Raspberry Pi tasks which took

miliseconds on my desktop required long minutes to complete. Convinced that the issue was database related I quickly created

a simple tool for genera�ng performance sta�s�cs and compared edge case scenario results from my desktop with those from
Raspberry Pi:

 Desktop

 getRange: 162ms

 85% database: 137ms

 15% calculations: 25ms

 Raspberry Pi

 getRange: 3m47s

 5% database: 11s

 95% calculations: 3m35s

Not only did I discover that a task which required 162 miliseconds to run on my desktop took 3 minutes and 47 seconds to

complete on Raspberry Pi but also realized that instead of being limited by the database performance my program spent 95% of

that �me just processing the retrieved data. A benchmark quickly revealed the problem:

 Showing top 25 nodes out of 26

 flat flat% sum% cum cum%
 (...)

 250ms 26.04% 51.04% 250ms 26.04% math.cos /usr/lib/go/src/math/sin.go

 30ms 3.12% 54.17% 160ms 16.67% math.atan2 /usr/lib/go/src/math/atan2.go

 30ms 3.12% 57.29% 130ms 13.54% math.atan /usr/lib/go/src/math/atan.go

 40ms 4.17% 61.46% 110ms 11.46% math.pow /usr/lib/go/src/math/pow.go
 100ms 10.42% 71.88% 100ms 10.42% math.satan /usr/lib/go/src/math/atan.go

 80ms 8.33% 80.21% 80ms 8.33% math.sin /usr/lib/go/src/math/sin.go

 50ms 5.21% 85.42% 50ms 5.21% math.ldexp /usr/lib/go/src/math/ldexp.go

 (...)

https://0x46.net/projects/flightradar/media/stats.png

My code performed a large amount of calcula�ons related to distances and bearings on a sphere (in this case Earth). They

involved using a significant number of rela�vely slow trigonometric func�ons - the algoritm calculated bearings and distances

from the base sta�on for each of the data points. I decided to par�ally replace the calcula�ons with approximate func�ons
using standard Euclidean geometry. Currently only a�er the values for all points are precalculated using Euclidean calcula�ons

the distances for points of interest are recalculated using accurate methods. Obviously Euclidean calcula�ons are completely

inaccurate but they do a good job when simply comparing rela�ve distances and could even be replaced by a series of

condi�onal statements when comparing points which lie on the same bearing from the base sta�on. This is the previously

shown edge case performance report a�er removing as many trigonomeric func�ons as possible:

 Raspberry Pi

 getRange: 31s

 41% database: 12s

 59% calculations: 19s

A total average reduc�on in execu�on �me averages 85%.

Future performance

Even though the backend is currently usable (albeit slow) I expect more performance related problems in the future. Even now

displaying range graphs is painfully slow but I am worried that it might simply be one of the joys of using a Raspberry Pi. As

spending all the �me on op�mizing the performance instead of adding more instres�ng features to the project is rarely

interes�ng (as illustrated by many popular programs that we encounter every day) currently I am quite pa�ent even when I

have to wait 10 seconds for the data to appear on my screen. More op�miza�on will unfortunarely likely be required if the
recep�on range improves and more data will be collected.

A backend repository can be found here.

Presen�ng the data

The frontend communicates with the backend using a JSON API and displays a real �me map of the tracked aircra�, short

flight history for each aircra�, a list of the last sigh�ngs of the given aircra�, a range graph which displays the furthest

detec�ons in every direc�on for a given �me range and other useful informa�on. While at first the frontend was very
rudimentary and didn't use any major frameworks apart from a few libraries such as jQuery or OpenLayers the current version

was built using Angular 5. The reasons for using Angular were mainly related to moun�ng technological challenges caused by

wri�ng a complex single-page applica�on using only jQuery. The ini�al concept called only for a map with minor elements

appearing around it from �me to �me, a task for which jQuery was an appropriate library. Eventually however I decided to add

mul�ple subpages and more features to the project which led to the codebase being simply unmanageable. Among the
interes�ng libraries that I've used and which I can recommend as being extremly useful are a simple and at the same �me

powerful char�ng library Chart.js and previously men�oned mapping libary OpenLayers which comes with a huge amount of

useful features and customizability.

The map �les that I've used are rendered based on the data from amazing Open Street Map. While at first I did use the

standard Open Street Map �les the text and a large number of features caused the planes to o�en be hard to no�ce. Because
of that I decided to switch to freely available �les provided by Carto. Currently the map is using �les called "Positron" which

come with a dark alterna�ve named "Dark ma�er". To make the Positron �les darker they are simply rendered with 50%

transparency over a black background. A large number of other �les based on Open Street Map can be found on the Open

https://github.com/boreq/flightradar-backend
http://www.chartjs.org/
https://openlayers.org/
https://www.openstreetmap.org/
https://carto.com/location-data-services/basemaps/
https://wiki.openstreetmap.org/wiki/Tiles

Street Map wiki or simply by searching online. The Open Street Map wiki is also very useful to learn about web maps and

mapping in general.

A frontend repository can be found here.

2018-02-05, updated 2018-02-26

https://wiki.openstreetmap.org/wiki/Tiles
https://github.com/boreq/flightradar-frontend
https://0x46.net/projects/flightradar/pics/1.png
https://0x46.net/projects/flightradar/pics/10.png
https://0x46.net/projects/flightradar/pics/2.png
https://0x46.net/projects/flightradar/pics/3.png
https://0x46.net/projects/flightradar/pics/4.png
https://0x46.net/projects/flightradar/pics/5.png
https://0x46.net/projects/flightradar/pics/6.png
https://0x46.net/projects/flightradar/pics/7.png
https://0x46.net/projects/flightradar/pics/9.png

