
WERAT.DEV Blog Talks

How Wine works 101
October 10, 2022

Wine is a compatibility layer capable of running Windows applications on several POSIX-

compliant operating systems, such as Linux, macOS, & BSD (https://www.winehq.org).

If you have been using Linux for some time now, chances are you’ve used Wine at some point.

Maybe to run that one very important Windows program that doesn’t have a Linux version or

maybe to play World of Warcraft or some other game. Fun fact, Valve’s Steam Deck uses a Wine-

based solution to run games (called Proton).

In the last year I’ve spent quite some time working on a debugger capable of debugging both

the Wine layer and the Windows application running with it. It was very interesting to learn

about the Wine internals – I’ve used Wine many times before, but never knew how it worked. If

you ever wondered how it’s possible to take a Windows executable and just run it on Linux

without any modifications – welcome to this article!

Disclaimer #

This article greatly simplifies reality and I don’t claim to know all the details. However I hope the

explanation here will give you a general understanding of how things like Wine work.

Not an Emulator #

https://werat.dev/
https://werat.dev/posts/
https://werat.dev/talks/
https://werat.dev/blog/how-wine-works-101/
https://www.winehq.org/
https://www.steamdeck.com/
https://github.com/ValveSoftware/Proton/

Before describing how Wine works, let’s explore how it doesn’t work. Wine is a recursive

acronym and it stands for “Wine Is Not an Emulator”. Why isn’t it? There are lots of great

emulators, both for older architecture and for modern consoles. Could Wine be implemented as

an emulator? Yep, but there are good reasons not to do this. Let’s take a quick look at how

emulators work in general.

Imagine we have some simple hardware, with two instructions:

push <value> – pushes given value to the stack

setpxl – pops three values from the stack and draws a pixel with color arg1 at

(arg2, arg3)

(this should be enough to create some cool demoscenes, right?)

> dump-instructions game.rom

...

draw red dot at (10,10)

push 10

push 10

push 0xFF0000

setpxl

draw green dot at (15,15)

push 15

push 15

push 0x00FF00

setpxl

The game binary (or ROM cartridge) is a sequence of these instructions, which the hardware can

load into the memory and then execute. The real hardware can execute them natively, but what

if we want to play the game on our modern laptop? We’ll create a software emulator – a program

that loads the ROM in memory and then executes its instructions. An interpreter or a virtual

machine, if you will. The implementation of the emulator for our two-instructions console can be

pretty simple:

enum Opcode {

 Push(i32),

 SetPixel,

};

let program: Vec<Opcode> = read_program("game.rom");

let mut window = create_new_window(160, 144); // Virtual screen of 160x144 pixels

let mut stack = Vec::new(); // Stack for passing arguments

for opcode in program {

 match opcode {

 Opcode::Push(value) => {

 stack.push(value);

 }

 Opcode::SetPixel => {

 let color = stack.pop();

 let x = stack.pop();

 let y = stack.pop();

 window.set_pixel(x, y, color);

 }

 }

}

The real emulators are a lot more complicated, but the basic idea is the same: maintain some

context (memory, registers, etc), handle input (e.g. keyboard/mouse) and output (e.g. drawing

to some window), parse input data (ROM) and execute the instructions one by one, applying

their side-effects.

This could be one way to implement Wine, but there are two reasons against it. First, the

emulators are “slow” – there’s a significant overhead on executing every single instruction

programmatically. This may be acceptable for older hardware, but not so much for the state of

the art (and video games have always been one of the most demanding types of applications).

The second reason is that there’s no need! Linux/macOS are perfectly capable of running

Windows binaries natively, they just need a little push…

Let’s compile a simple program for both Linux and Windows and compare the results:

int foo(int x) {

 return x * x;

}

int main(int argc) {

 int code = foo(argc);

 return code;

}

(left – Linux, right – Windows)

The results are visibly different, but the instruction set is actually the same: push , pop , mov ,

add , sub , imul , ret . So if we had an “emulator” that can execute these instructions,

theoretically it should be able to execute both. And turns out that we do have it – that’s our CPU.

How Linux runs a binary #

Before running a Windows binary on Linux, let’s figure out how to run a normal Linux binary.

❯ cat app.cc

#include <stdio.h>

int main() {

 printf("Hello!\n");

 return 0;

}

❯ clang app.cc -o app

❯ ./app

Hello! # works!

Simple enough, let’s go a bit deeper. What happens when we do ./app ?

❯ ldd app

 linux-vdso.so.1 (0x00007ffddc586000)

 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f743fcdc000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f743fed3000)

❯ readelf -l app

Elf file type is DYN (Position-Independent Executable file)

Entry point 0x1050

There are 13 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040

 0x00000000000002d8 0x00000000000002d8 R 0x8

 INTERP 0x0000000000000318 0x0000000000000318 0x0000000000000318

 0x000000000000001c 0x000000000000001c R 0x1

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

...

First of all, we see that the app is a dynamic executable. This means that it depends on some

dynamic libraries and requires them to be present in runtime to be able to run. Another

interesting thing here is the “requesting program interpreter” part. What’s an interpreter doing

here? I thought C++ was a compiled language, unlike Python…

In this context the interpreter is the “dynamic loader”. It’s a special program that bootstraps the

execution of the original program: it resolves and loads its dependencies and then gives over

the control.

❯ ./app

Hello! # This works!

❯ /lib64/ld-linux-x86-64.so.2 ./app

Hello! # This works too!

Homework exercise, run this and try to make sense of the output.

❯ LD_DEBUG=all /lib64/ld-linux-x86-64.so.2 ./app

When running the executable, the Linux kernel detects that it’s dynamic and requires a loader.

Then it executes the loader, which does all the work. We can verify that by running the program

under the debugger, for example:

❯ lldb ./app

(lldb) target create "./app"

Current executable set to '/home/werat/src/cpp/app' (x86_64).

(lldb) process launch --stop-at-entry

Process 351228 stopped

* thread #1, name = 'app', stop reason = signal SIGSTOP

 frame #0: 0x00007ffff7fcd050 ld-2.33.so`_start

ld-2.33.so`_start:

 0x7ffff7fcd050 <+0>: movq %rsp, %rdi

 0x7ffff7fcd053 <+3>: callq 0x7ffff7fcdd70 ; _dl_start at rtld.c:503:1

ld-2.33.so`_dl_start_user:

 0x7ffff7fcd058 <+0>: movq %rax, %r12

 0x7ffff7fcd05b <+3>: movl 0x2ec57(%rip), %eax ; _dl_skip_args

Process 351228 launched: '/home/werat/src/cpp/app' (x86_64)

Here we can see that the first instruction executed is in ld-2.33.so , not the app binary.

To summarize, the process of running a dynamically linked executable on Linux looks roughly

like this:

Kernel loads the image (≈ binary) and sees it’s a dynamic executable

Kernel loads the dynamic loader (ld.so) and gives it control

The dynamic loader resolves the dependencies and loads them

The dynamic loader gives the control back to the original binary

The original binary starts execution in _start() and eventually gets to main()

At this point it’s pretty clear why simply running a Windows executable won’t work – it has

different format and the kernel simply doesn’t know what to do with it:

❯ ./HalfLife4.exe

-bash: HalfLife4.exe: cannot execute binary file: Exec format error

However, if we could get past the steps 1-4 and somehow get to 5, it should work in theory,

right? Since we’re talking about “execution”, what does it mean, from the OS perspective, to

“run” the binary?

Every executable has the .text section, which contains the serialized CPU instructions:

❯ objdump -drS app

app: file format elf64-x86-64

...

Disassembly of section .text:

0000000000001050 <_start>:

 1050: 31 ed xor %ebp,%ebp

 1052: 49 89 d1 mov %rdx,%r9

 1055: 5e pop %rsi

 1056: 48 89 e2 mov %rsp,%rdx

 1059: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp

 105d: 50 push %rax

 105e: 54 push %rsp

 105f: 4c 8d 05 6a 01 00 00 lea 0x16a(%rip),%r8 # 11d0 <__libc_csu_

 1066: 48 8d 0d 03 01 00 00 lea 0x103(%rip),%rcx # 1170 <__libc_csu

 106d: 48 8d 3d cc 00 00 00 lea 0xcc(%rip),%rdi # 1140 <main>

 1074: ff 15 4e 2f 00 00 call *0x2f4e(%rip) # 3fc8 <__libc_start_

 107a: f4 hlt

 107b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

...

In order to “run” the executable the operating system loads the binary into memory (specifically

the .text section), sets the current instruction pointer to an address where the code is located

and that’s it, the executable is running. Can we do the same for Windows executables?

Yes! The code inside the executables is “portable” between Windows and Linux (assuming the

same CPU architecture). If we just take the code out of the Windows executable, load it in

memory and point %rip to the right place – the processor will happily execute it!

Hello, Wine! #

Essentially, wine is a “dynamic loader” for Windows executables. It’s a native Linux binary,

hence it can just run normally, and it knows how to deal with EXE and DLLs. It’s kinda an

equivalent of ld-linux-x86-64.so.2 :

running an ELF binary

❯ /lib64/ld-linux-x86-64.so.2 ./app

running a PE binary

❯ wine64 HalfLife4.exe

wine loads the Windows executable into memory, parses it, figures out the dependencies,

figures out where the executable code is (i.e. the .text section) and then finally jumps into

that code.

Well, in reality it jumps into something like ntdll.dll!RtlUserThreadStart() , which

is the “user-space” entry point in the Windows world. It will eventually get to

mainCRTStartup() (the equivalent of _start) and then finally to the actual

main() .

At this point our Linux system is executing the code originally compiled for Windows and

everything seems to work. Except…

System calls #

System calls, or syscalls for short, is what makes Wine so complicated. Syscall is a call of a

function that is implemented in the operating system (hence, system call), not in the application

binary or any of its dynamic libraries. The set of syscalls provided by the OS is essentially the

operating system API.

Examples on Linux: read , write , open , brk , getpid

Examples on Windows: NtReadFile , NtCreateProcess , NtCreateMutant 😱

System calls are not regular function calls in the code. Opening a file, for example, must be

performed by the kernel itself, since it’s the one keeping track of the file descriptors. Therefore

the application code needs a way to “interrupt” itself and give control to the kernel (this

operation is typically called context switch).

The set of functions exposed by the operating system and the way they should be called are

different on every operating system. On Linux, for example, in order to call read() the binary

would put the file descriptor into the register %rdi , the buffer pointer to %rsi and the number

http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FMutant%2FNtCreateMutant.html
https://en.wikipedia.org/wiki/Context_switch

of bytes to read to %rdx . On Windows, however, there’s no read() function in the kernel!

Neither the arguments would make any sense. Therefore the binary compiled for Windows will

use the Windows-way of doing syscalls, which will not work on Linux as is. I won’t go deep into

how exactly syscalls work, here’s a great article about the Linux implementation –

https://blog.packagecloud.io/the-definitive-guide-to-linux-system-calls/.

Let’s compile another small program and compare the generated code on Linux and Windows:

#include <stdio.h>

int main() {

 printf("Hello!\n");

 return 0;

}

(left – Linux, right – Windows)

This time we’re calling a function from the standard library, which, in turn, eventually performs a

system call. On the screenshot above the Linux version calls puts and the Windows one –

printf . These functions are coming from the standard library (libc.so on Linux,

ucrtbase.dll on Windows), which the application uses to simplify the communication with the

kernel. On Linux it’s fairly common these days to build statically linked binaries, which don’t

depend on any dynamic libraries. In that case, the implementation of puts is embedded into

the binary and no libc.so is involved in runtime.

On Windows, at least until not so long ago, “only malware used direct system calls”
[citation

needed]
. Normal applications always depend on kernel32.dll/kernelbase.dll/ntdll.dll , which

hide the low level magic of communicating with the kernel. The application just calls a function

and the libraries take care of the rest:

https://blog.packagecloud.io/the-definitive-guide-to-linux-system-calls/

(credit https://alice.climent-pommeret.red/posts/a-syscall-journey-in-the-windows-kernel/)

At this point you probably already have a feeling of what we’re going to do next 😏

Runtime translation of syscalls #

What if we could “intercept” a syscall? Like, whenever the application calls NtWriteFile() , we

would get in between, call write() instead and return the result in a format the binary expects.

That should work. The quick and dirty solution for the example above might look something like

this:

// HelloWorld.exe

lea rcx, OFFSET FLAT:`string'

call printf

 ↓↓

// "Fake" ucrtbase.dll

mov edi, rcx // Convert the arguments to Linux ABI

call puts@PLT // Call the real Linux implementation

 ↓↓

// Real libc.so

mov rdi, <stdout> // write to STDOUT

mov rsi, edi // pointer to "Hello"

mov rdx, 5 // how many chars to write

syscall

We can provide a custom version of ucrtbase.dll which would have a special implementation

of printf . Instead of trying to call the Windows kernel, it would follow the Linux ABI and call

the write function from libc.so . In practice, however, the application can link against

ucrtbase.dll statically and we can’t modify the code of the binary for a number of reasons –

it’s messy and complicated, it messes with the DRM, etc.

https://alice.climent-pommeret.red/posts/a-syscall-journey-in-the-windows-kernel/

So instead we would modify the place that stands in between the binary and the kernel –

ntdll.dll . This is the “gateway” into the kernel and Wine indeed provides its custom

implementation. In the recent versions of Wine it consists of two parts: ntdll.dll (which is a

PE library) and ntdll.so (which is an ELF library). The first one is a thin layer that just redirects

the calls into the ELF counterpart. The ELF counterpart contains a special function called

__wine_syscall_dispatcher , which performs a magic trick of converting the current stack from

Windows to Linux and back.

Therefore, when doing a syscall the call stack of the process running with Wine looks like this:

The syscall dispatcher is a bridge between the Windows world and the Linux world. It takes care

of the calling conventions – allocates some stack space, moves the registers around, etc. Once

the execution is in the Linux library (ntdll.so), we’re free to use any regular Linux APIs (e.g.

libc or syscall) and can actually read/write files, lock/unlock mutexes and so on.

Is that it? #

It sounds almost too easy. And it would be. First of all, there are a LOT of Windows APIs. And

they’re poorly documented and have known (and unknown haha) bugs, which must be

preserved exactly as is. Most of the Wine source code is the implementation of various Windows

DLLs.

https://github.com/wine-mirror/wine/tree/3602c676dadf823a4868b0b72f326159cb93766e/dlls/ntdll
https://github.com/wine-mirror/wine/blob/1d178982ae5a73b18f367026c8689b56789c39fd/dlls/ntdll/unix/signal_x86_64.c#L3142

Second, there are different ways to perform syscalls. Technically nothing prevents the

application to do a direct system call via the syscall instruction and ideally this should work

too (remember, Windows games do all kinds of crazy things). Linux kernel has a special

mechanism to handle this and of course it only adds complexity.

Third, there’s this whole 32-bit vs 64-bit nonsense. There are a lot of old 32-bit games, which are

never going to be re-released as 64-bit. Wine has support for both and again, this adds up to the

overall complexity of the system.

Fourth, I didn’t even mention wine-server – a separate process spawned by Wine, which

maintains the kernel “state” (open file descriptors, mutexes, etc).

Fifth, oh, did you want to run a game? Not just a hello world? Then you need to deal with

DirectX, audio (hello PulseAudio, my old friend), input devices (gamepads, joysticks), etc. It’s a

lot of work!

Wine has been in development for many years and came a long way. Today you can run the

latest games like Cyberpunk 2077 or Elden Ring without any issues. Damn, sometimes Wine has

even better performance compared to Windows! What a time to be alive…

I hope this article gave you a basic idea of how Wine works. As I warned in the disclaimer, I’ve

simplified a bunch of things and I may be wrong about some details (hopefully not too much). If

you see that I’m outright misleading people, please reach out and correct me!

Discuss this article on lobste.rs or HackerNews or Reddit (r/Linux_Gaming, r/programming)

Unofficial translations:

Russian – https://habr.com/ru/company/dcmiran/blog/693842/

Chinese – https://www.freebuf.com/articles/system/346955.html

© 2017 - 2023 Andy Hippo · Licensed under MIT

https://lwn.net/Articles/824380/
https://lobste.rs/s/7f8exp/how_wine_works_101
https://news.ycombinator.com/item?id=33156727
https://www.reddit.com/r/linux_gaming/comments/y0ts39/how_wine_works_101/
https://www.reddit.com/r/programming/comments/y0tbuf/how_wine_works_101/
https://habr.com/ru/company/dcmiran/blog/693842/
https://www.freebuf.com/articles/system/346955.html
https://github.com/werat/werat.github.io/blob/main/LICENSE

